Autograding Interactive Computer Graphics Applications

Evan Maicus
Rensselaer Polytechnic Institute
maicue@rpi.edu

Andrew Aikens
Rensselaer Polytechnic Institute
aikena@rpi.edu

ABSTRACT

We present a system for the automated testing and grading of com-
puter graphics applications. Our system runs, provides input to,
and captures image and video output from graphical programming
assignments. Instructors use a simple set of commands to script au-
tomated keyboard and mouse interactions with student programs
at fixed times during execution. The resultant output — includ-
ing plaintext standard output and mid-execution screenshots and
GIFs — are displayed to the student to aid in debugging and ensure
compliance with assignment specifications. Student output is auto-
matically evaluated by basic text and image difference operations,
or via an instructor-written validation method.

We evaluate the success, implementation, and robustness of
our design through deployment of this work in our university’s
senior undergraduate/graduate computer graphics course. In this
course, students implement a variety of graphical assignments using
OpenGL in C++. We summarize student feedback about the system
gathered from anonymous end-of-term course evaluations. We pro-
vide anecdotal and quantitative evidence that the system improves
student experience and learning by clarifying instructor expecta-
tions, building student confidence, and improving the consistency
and efficiency of manual grading.

This research has been implemented as an extension to Submitty,
an open source, language-agnostic course management platform
which allows automated testing and automated grading of student
programming assignments. Submitty supports all levels of courses,
from introductory to advanced special topics, and includes fea-
tures for manual grading by TAs, version control, team submission,
discussion forums, and plagiarism detection.

CCS CONCEPTS

« Computing Education — Computer Science Education; « Com-
puting Methodologies — Computer graphics.

KEYWORDS

Computer Graphics, Testing, Autograding, Course Management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366954

Matthew Peveler
Rensselaer Polytechnic Institute
pevelm@rpi.edu

Barbara Cutler
Rensselaer Polytechnic Institute
cutler@cs.rpi.edu

ACM Reference Format:

Evan Maicus, Matthew Peveler, Andrew Aikens, and Barbara Cutler. 2020.
Autograding Interactive Computer Graphics Applications. In The 51st ACM
Technical Symposium on Computer Science Education (SIGCSE °20), March
11-14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3328778.3366954

1 INTRODUCTION

Due in large part to the recent explosion in computer science enroll-
ments, extensive work has been done to develop automated grad-
ing solutions to aid in instructor course management [2]. While
prior research has been done regarding the importance of these
systems [17], that work tends to heavily focus on the impact of
autograding on introductory courses [16], and in particular on
non-visual assignments which take simple, text-based input and
which produce text-based output. As introductory course sizes
have swollen, however, advanced-topics course enrollments have
grown as well. This has left a need for autograding solutions for
assignments which do not fit into the traditional, text-based grading
scheme. Such is the case for computer graphics assignments.

1.1 Manually Grading Graphics Assignments

The manual evaluation of student graphics assignments is a te-
dious and time-consuming task. For compute-heavy simulations,
such as ray tracing, minutes of execution may be required before
a gradeable visualization is rendered. If an assignment requires
manual interaction — perhaps via keyboard or mouse input — the
grader must stay nearby, ready to manually manipulate the assign-
ment to keep the test-suite moving. Assignment grades are often
determined by manually manipulating a program to inspect for
visual errors. This visual output is more difficult to capture than
text-based command line output. As course sizes swell, the amount
of instructor and TA time spent on these monotonous tasks grows,
decreasing time available to teach and help students in office hours.

Furthermore, student programs that interface with low level
graphics APIs such as OpenGL [8] may have dependencies on spe-
cific hardware, drivers, or operating systems. These programs may
execute differently from system to system, yielding different output
or code failure [10]. When the student and grader use different
environments, efficient and fair evaluation of student work can be
negatively impacted. When a program fails on a grader’s machine,
it may be unclear whether the student work is incomplete and
would fail on every system or if perhaps the error is environment-
specific, and should receive only a minor penalty or no penalty
at all. The grader has three unsatisfying options: spend additional
time attempting to debug the error, delay grading and contact the
student for followup, or give the student no credit.

https://doi.org/10.1145/3328778.3366954
https://doi.org/10.1145/3328778.3366954
https://doi.org/10.1145/3328778.3366954

SIGCSE 20, March 11-14, 2020, Portland, OR, USA

1.2 Contributions

We present the design and implementation for the automatic execu-
tion and evaluation of student programs with graphical front end.
This work is integrated into Submitty, an open source, full-featured
assignment submission, autograding, and course management en-
vironment [14]. This system was deployed in RPI’s Advanced Com-
puter Graphics course using OpenGL and C++. Our system:

o Allows the instructor to script keyboard and mouse input
actions that will be applied to a running student process.

e Provides responsive feedback to students, including text-
based output, screenshots, and videos of execution.

o Facilitates visual image difference operations for automated
evaluation and scoring. The instructor may specify custom
validation methods to appropriately judge the correctness
of nuanced assignments and award full or partial credit.

o Optionally generates output files from an instructor-prepared
solution, against which student work will be compared.

2 RELATED WORK

Few existing systems are explicitly designed for automated grading
of graphical applications; however, various methodologies are em-
ployed in industry to test and validate graphical software products.
We pay special mind to solutions which support OpenGL, the graph-
ics interface used in our university’s computer graphics course.

2.1 Defining Full and Partial Correctness

To automatically grade or validate visual output, an appropriate
definition of “correctness” must first be established. Under one defi-
nition, correctness could be the full-color RGB, pixel perfect match
of an output image. An alternative definition may be the perceptual
equivalence to a target visual output [6]. Then a comparison algo-
rithm such as Mean Squared Error (MSE) — which relies heavily on
image color — or Structural Similarity Index (SSIM) — which relies
on the relative structure of an image — can be chosen to evaluate an
image. Automated visual evaluation of graphical program output
provides a close analog to the method of manual grading described
in section 1.1. Yet it is important to remember that differences in
hardware, drivers, and numerical implementation of a graphics
program can lead to outputs that differ slightly from machine to
machine [10, 18].

Not all schemes for determining graphical application correct-
ness utilize a program’s visual output. The correctness of a graphics
application may instead be determined by evaluation of text-based
output or internal program state. For instance, an automated grader
might test the value of the OpenGL GL_MODEL_VIEW matrix when
teaching transformations. The grader might unit-test individual
student-written functions and inspect their return values rather
than provide an end-to-end, holistic assessment of visual program
output [18]. An automated grader of 3D meshes could validate
the expected number of each type of polygon and the positions
of vertices in the mesh [5] or use a method of geometric approxi-
mation [3]. It is important to include an appropriate tolerance or
epsilon in all comparisons — numeric and visual.

Techniques that are appropriate for regression testing of soft-
ware products may not be directly applicable to grading student
work. To avoid demoralizing students, the grading of their work

Maicus, Peveler, Aikens, and Cutler

should generally not be binary. Instead it should evaluate partial
correctness, and highlight incremental progress and improvement
in the quality of results over multiple submissions.

2.2 Automated Interaction

There are a number of ways to provide automated input to running
graphical applications. If the user interface is highly structured
(e.g., interfaces written in markup languages such as HTML), we can
leverage language-based element selectors for detection and inter-
action [12]. Such test infrastructures are especially useful when
the components of a GUI may not always appear in the same pixel
coordinates. If an application has a highly predictable GUI, but is
not written in a structured language (e.g. a GUI programmed in
OpenGL), Optical Character Recognition (OCR) and image recogni-
tion algorithms can be used to detect the existence and position of
GUI elements [15]. In cases in which a structured language is not
used and GUI features are not easily detectable or are non-existent,
inputs can be either recorded or hand specified [4].

While industrial applications exist for testing computer graph-
ics applications, and specifically OpenGL based graphics programs,
most are closed-source, require payment or subscription to use, and
are not integrated into an automated grading environment. During
our literature review we did not encounter any automated grading
systems, for pay or otherwise, which natively facilitated keyboard
or mouse interactions with student programs.

2.3 Testing Methodologies

Testing graphical programs for correctness has been thoroughly
investigated within the television [6], web design [12], and video
game [1, 10, 15] communities. To ensure a software product works
in all target environment deployments, a suite of unit-tests can be
deployed across many different hardware/software configurations
[10, 11]. While thorough, such an approach can be prohibitively
costly in time and hardware, especially for small projects.

Experimental work has been done to test graphical applica-
tions by deploying roaming, error-detecting artificial intelligence
agents [7] and define classes of visual error with algorithms for
their detection. Alternatively, some frameworks deploy artificial
users that have been trained to properly interact with an appli-
cation at a far faster rate than a human user. Event logs of these
interactions are then stored and later evaluated for error messages
or crashes [1]. Such designs require additional up-front investment
from the test-writer, who must either accurately identify a represen-
tative set of bugs and detection algorithms, or program relatively
realistic artificial users. However, these designs remove the need
to configure dozens or hundreds of unit-tests. Deep learning has
been used to train agents to evaluate and classify the correctness
of randomly-synthesized variants of graphics applications [19].

3 SYSTEM DESIGN AND IMPLEMENTATION

Our system was designed to support RPI’'s Advanced Computer
Graphics course, which is comprised of five intensive, multi-week
OpenGL and C++ programming assignments. The instructor pro-
vides a common framework of initial code for each assignment,
and a structured set of requirements to complete core features of
an algorithm and optional extensions. We have designed most of

Autograding Interactive Computer Graphics Applications

our testing to rely on simple per-pixel image differences, with an
adjustable tolerance based on the assignment topic. We anticipate
exploring the use of a perceptual correctness metric [6] and more
complex computer vision algorithms for analysis in future work.

We use end-to-end test suites as our primary testing methodol-
ogy rather than short unit tests of student functions. We facilitate
instructor scripted keyboard and mouse input to running student
applications. This approach is language- and application- agnostic,
allowing our system to interface with non-OpenGL assignments.

Our system was designed for integration within Submitty, the
Open Source automated grading and course management tool used
at RPL Students are able to submit their assignments via Submitty’s
intuitive web interface. Our extension then handles submission
processing before reporting results to the student via the same
interface in a timely manner.

3.1 Window Detection

To receive keyboard and mouse input, we must give the student
application window focus and calculate its relative position. Three
methods were considered to accomplish this:

o Window Title The instructor could specify a mandatory
window title for each assignment, which can be detected by
inspecting the metadata for all running windows. However,
if a student does not follow the window title specification,
the resulting failure for visual output to be detected by our
system might be difficult for them to debug.

o Process Id Ownership Most applications include the owner
process id in the window metadata. Using Unix utilities, we
can detect window ids that belong to a student process. While
detecting window ids is effective for detecting the windows
of OpenGL programs, windows generated by the standard
Python graphics library, Tkinter, for example, do not store
initializing process ids.

e Newly Created Windows Before launching the student
process, we record a list of all open windows on the system.
Then, after the student process begins, the first new window
that appears can be assumed to belong to the student process.
While simple, this method is less robust and may errantly
capture unrelated popup windows if they open during the
critical moments of application launch.

We have selected a flexible hybrid approach to detect window
ownership. For the first second of student application execution,
we search for a graphical window by process id. If that method is
not fruitful, we switch to the newly created window approach.

3.2 Input Specification

Interactions with student assignments are performed using window
pixel coordinates. This decision facilitates interaction with arbitrary
student assignments, regardless of programming language or soft-
ware structure, and fits the needs of our targeted course. This design
choice can be extended in the future to use element-detection, OCR,
and image recognition solutions [13, 15].

Our comprehensive list of supported actions is as follows:

(1) delay: A wait time, in seconds, before the next action.

(2) type: A string typed in window as keyboard input. Multiple
key combinations such as ctrl+alt+del may be specified.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

(3) stdin: A string delivered to the process as standard input.
(4) stop: Terminate the student process.
(5) start: Re-invoke a stopped student process.
(6) screenshot: Save the current window to a file.
(7) GIF: Capture avideo of the current window to a file. Capture
and replay rates specified in frames per second.
(8) mouse move: To a specific window coordinate.
(9) click: Press (or hold) left/right/middle mouse button.
(10) click and drag: Move mouse while holding mouse button.

For each testcase in an assignment, the instructor prepares a
sequence of the above actions. Most actions, such as keyboard
inputs and mouse clicks, are processed nearly instantly. Compound
actions such as click and drag can take more time to perform.
Timing can be further padded with delays, e.g., to allow a ray tracing
application to completely render before taking a screenshot. Most
actions include a repeat option after a short delay, allowing easy
specification of “double click”, for example.

3.3 Fault Tolerance

Automated grading is different from industrial software product
testing in a number of significant ways. Product tests usually take
the form of “Regression Tests”, which we assume passed in the
master branch, and we simply want to confirm the proposed soft-
ware changes to not break this functionality. On test failure, finding
the source of errors is typically a search process focusing on the
modified lines of source code. In automated grading, we are testing
a new software system that instead aspires to be able to succeed
against a battery of tests. For this reason, it is essential that we
capture evidence of partial work, not only to fairly reward student
effort, but also so that we can deliver all available information about
their run to facilitate debugging.

A student application might crash at any time, including during
the processing of a keyboard or mouse action. In fact, actions trig-
gering computation in student code are likely the source of most
crashes. For this reason, once the program window is detected, its
status is polled at the start of each action, and between sub-actions
for compound commands such as Click and Drag. If a window
close occurs during an action, the action immediately stops, and
no more actions are delivered until another valid window appears.
Note that we handle applications which spawn and close windows,
so long as multiple windows are not created concurrently. If a
student program crashes, all text output, screenshots, and GIFs
recorded up to that point are delivered to the student, as well as
any additional stderr output dumped by their program or OpenGL.

3.4 Security

Autograding differs from industrial software testing in that student
code is executed as a black box. Student programs must not be
allowed to affect the greater testing infrastructure. We must ensure
student privacy and fair and equal access to testing environment
resources. We must guard against the small but real chance that
student code may be malicious.

Submissions processed by Submitty are run within a Jailed Sand-
box: a carefully permissioned environment in which an untrusted
user executes an application and in which system resource usage is

SIGCSE 20, March 11-14, 2020, Portland, OR, USA

Difference radiance

Expected interpolated radiance Difference interpolated radiance

radiance Expected radiance

mw 4R Oy |
- |

apge”

interpolated radiance

Figure 1: A mathematical error in the surface area term of
radiosity will produce subtle variations in lighting. A side-
by-side, per pixel image comparison aids student debugging.

carefully monitored. Alternatively, we could use containerized auto-
grading to ensure security and resource management [9]; however,
at the time of our development, we found that container solutions
did not natively support running graphics applications.

To run applications which interface with a screen, the restric-
tions of a jailed sandbox had to be carefully loosened. At the be-
ginning of the execution of a graphics application in Submitty, an
untrusted user is granted access to the OpenGL distribution installed
on a grading machine, and necessary system variables are set (e.g.,
“DISPLAY”). The user is then given access to the running xserver.

Another security concern is that keyboard and mouse actions
might errantly affect the test system. Thus, while processing a
suite of actions, it is important that the mouse does not escape the
bounds of the application window created by a student program.
To ensure this, we store the dimensions of the student window, and
any autograder actions which attempt to move the mouse beyond
these bounds are either clamped to one pixel inside of the window’s
edge (to avoid window resizing), or, in the case of actions such as
Click and Drag, are decomposed into multiple, smaller actions.

3.5 Validation

To facilitate side-by-side manual comparison or automated grading,
we must have solution images against which student output will
be compared. When preparing multiple complex test cases which
utilize lengthy sequences of keyboard and mouse actions, manual
preparation of solution images is time-consuming. As an alternative,
we allow instructors to provide their assignment solution, which
is used to generate text output, screenshots, and video for use as
ground truth values.

Our system compares screenshots using a simple image differ-
ence operation with a customizable pixel percentage tolerance. By
default, we compare images using the MSE operation [6], which
grades students more heavily on color than on structure. However,
for specific assignment tasks, other metrics may be more suitable.
Instructors can write custom validators that return a score and op-
tional text and/or image feedback for the student. These validators

Maicus, Peveler, Aikens, and Cutler

Raytree vi

i Ex| Raytree visuali Difference Raytree visualization

Figure 2: A single pixel ray trace tree visualization helps
students spot a missing shadow bounce and other geometric
errors in their recursive ray intersections and reflections.

may leverage image processing libraries such as OpenCV to perform
in-depth analysis of student output.

4 RESULTS: CASE STUDY

In Spring 2019, our system was deployed and extensively used in
RPI's Advanced Computer Graphics course to test and evaluate five
multi-week programming assignments using OpenGL in C++. The
assignments cover a variety of topics including: mesh processing,
cloth and fluid simulation, radiosity, ray tracing, photon mapping,
shadow volumes, and procedural shaders. All of these assignments
were run successfully using our system, and the captured screen-
shots and videos were presented to students shortly after each
submission. These visual results from each test case were also auto-
graded to varying degrees of success (some assignments and topics
were more conducive to effective automated scoring). At the end of
the term, students completed a course evaluation which included
questions regarding their experience using our system.

4.1 Grading Time-Intensive Computation

The test suite for a radiosity + ray tracing + photon mapping as-
signment was the longest-running (cumulative time for all actions
including delays) of all five assignments. The action sequence in-
clude delays as long as 60 seconds before an intermediate screenshot
was saved, and a total of twelve and a half minutes of explicit delay
was specified over all testcases. The manual grading time savings
of our system was more evident in this assignment than any other,
as the grader did not have to monitor the renderings during testing,
but could instead quickly review saved imagery and correct auto-
mated scoring if needed. Prior offerings of this course used the same
assignment but did not use automated testing. It is unlikely that the
grader was equivalently patient or thorough in manually running
student code. We presume student code was terminated earlier
and evaluation was potentially inaccurate because it was based
on partial test results. The MSE image difference was effective in
validating rendering algorithms and generally useful in debugging
and awarding partial credit (Fig. 1 & 2).

4.2 Step-by-Step Visual Unit Testing

When testing student implementation of shadow volumes, it was
helpful to decompose a longer sequence of test actions into a series
of intermediate screenshots with models of different geometric
complexity, different visual debugging options, and different light
positions and camera angles (Fig. 3). The presented sequence of

Autograding Interactive Computer Graphics Applications

Shadow Polygons Expected Shadow Polygons Difference Shadow Polygons

Y .

Figure 3: In addition to capturing the final stencil buffer
shadow rendering, we also visualize the shadow volume
polygons for different camera and light positions — enabling
students to spot geometric inconsistencies in their code.

output helped students to determine what worked vs. what was
buggy, and to hypothesize and diagnose their errors. Preparing
these tests was made easier by years of instructor familiarity with
common student implementation errors, which is testament to the
fact that writing good autograding testcases requires experience.

4.3 Wireframe for Grading Mesh Operations

The students were asked to simplify a 3D triangular mesh by editing
and removing elements in a greedy manner. Using a simple MSE
comparison of the mesh can confirm that the overall shape and
shading is approximately preserved, but it does not necessarily
reveal whether the student implemented a specified deterministic
algorithm for element reduction. By overlaying a wireframe on the
mesh, we were able to fully test student output (Fig. 4). However,
while this did allow us to score student output, it is not simple for
the student to use the produced difference image to debug their
assignment. Providing better feedback likely requires more thought
for assignment-specific test case design and is left as future work.

4.4 Physics Simulation Videos/Manual Grading

On another assignment, students implemented an explicit Euler
integration mass-spring physical cloth simulation. Their simula-
tions were initialized with forces and a reasonable timestep and
allowed to run for approximately double the expected time neces-
sary to reach equilibrium. Through the automated grading of this
assignment, the instructor found a subtle, long-standing error in
the assignment specifications for damping coefficient, that yielded
a visual mismatch of the equilibrium state between correct stu-
dent solutions and the incorrect instructor solution. Student grades
were manually inspected by the TA and appropriate adjustments
were made to the scores of impacted students. In this instance,

Expected si
ERRO!

Figure 4: We were able to detect errors in geometric simpli-
fication by rendering the mesh wireframe.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

pec
RROR:

Figure 5: It can be difficult to discern differences in assign-
ment performance and simulation timestep from a single
image. In this case, a GIF revealed that the student’s simula-
tion ran too slowly for our 10 second test-suite, but did reach
an acceptable point of equilibrium.

our system’s ability to capture and replay GIF videos of student
code execution was invaluable, as differences in performance and
simulation timestep cannot be discerned in a single frame (Fig. 5).

4.5 Creative Solutions for Nondeterminism

To introduce rotation, scale, and translation transformations, stu-
dents are asked implement a simple fractal rendering algorithm
that uses random points. We found that a naive image difference
using a reasonable but small number of points yielded poor scores
for correct solutions or require such a large tolerance that it might
fail to identify buggy student solutions. To mitigate this problem,
we reduce the size of the screen capture and increased the size of
each rendered point (already options required to be implemented
in the assignment specifications). The simple image difference only
required a small tolerance factor and correctly distinguish correct
and incorrect implementations (Fig. 6).

4.6 Automated Execution Without Validation

To familiarize students with the GPU rendering pipeline, they were
asked to implement a few simple fragment and vertex shaders (e.g.,
a brick shader or a wood shader). Because the instructions were
open-ended and encouraged creativity, automated validation was
not used. However, the system was still configured to run student
submissions and collect screeenshots for later manual grading of
subjective quality — saving grader time and hassle! As an added
benefit, when students submitted, they were able to confirm their
program was working correctly by inspecting these screeenshots.

Student Screenshot

ERROR: Your image does not match. Student Screenshot Expected Student Screenshot

K
e
e

) 'iw«...

Figure 6: An error with probabilities produces a buggy im-
age (left). Debugged student work (middle) is awarded full
credit despite not being a per-pixel match with the expected
(non-deterministic) output.

SIGCSE 20, March 11-14, 2020, Portland, OR, USA

4.7 Course Evaluation Responses

Students completed an end-of term course evaluation about their
experience submitting graphical assignments for automated testing.
27 of the 34 students enrolled in the class returned the survey
and most provided lengthy, thoughtful written responses to our
questions. Of the 27 respondents, 19 found our extension helpful to
their learning in the course, 6 did not specify, and 2 students found
our system unhelpful. Comments included that “seeing side-by-
side comparisons of the student and instructor solutions was very
helpful”. Of the respondents, 4 commented on long wait times while
using our system. One student stated that their “biggest gripe was
the slow speed of the grading,” and another that “the time it takes
to autograde is a bit frustrating, although it does incentivize early
submission.” 18 of our 27 students noted that the tolerances used in
our image difference metrics did not afford sufficient partial credit,
and, in some cases, resulted in false-negatives — cases in which the
student felt that their output was subjectively equivalent to the
instructor output, but in which the autograder’s tolerance awarded
them partial or no credit. Students noted that “sometimes it (the
autograder) would give deductions even when differences were
minimal enough”, and that “the autograde ’grade’ is really the only
thing that was kind of stressing.” Students unanimously appreciated
our system’s ability to show them a comparison of their output to
the correct, instructor output, noting that this comparison helped
them to detect errors early, and therefore provided opportunity
to make adjustments earlier in the development cycle. Feedback
included that “diff view was helpful for more subtle issues” and that
“gifs and images with the differences given are really helpful”.

5 DISCUSSION

Most students found our system to be helpful to their learning - in
particular, its ability to show them the expected output. Throughout
the semester, we were pleased with the system’s performance across
a variety of assignments, and with each homework we found new
ways to leverage its functionality. Furthermore, we noted that while
using our system students made earlier test submissions, which
allowed them to confirm through automated testing and grading
that they were on the right track and it motivated them to tackle
the next challenge. As a result, the average student successfully
completed more of the milestones per assignment than in past
semesters. This makes sense, since previously students did not
receive any feedback on their submission until manual grading
was completed, often many days after the homework deadline. An
additional benefit of running student assignments through a set of
automated tests was that it allowed the instructor to specify more
complete and rigorous testing than would otherwise have been
performed, especially when grading long-running assignments.
Our system is not without limitations. In particular, we have
noted students’ complaints about long autograding wait times.
These complaints are due in part to the hardware configuration
used by our tool; as our system was newly deployed, we hosted it
on a single machine, which ran student submissions serially in FIFO
order. This meant that, if two students submitted at the same time,
one would have to wait for the other to finish grading. As seen in
Fig. 7, this limitation was particularly evident during peak hours,
when more than five submissions were made. These hours tended
to be on the eve of an assignment’s due date. In the case of our

Maicus, Peveler, Aikens, and Cutler

® Non-Peak Average Wait Time
Non-Peak Average Grade Time
® peak Average Wait Time

Peak Average Grade Time

Time (min)

10
e Je— _I i

0
Nondeterminism Wireframe Physics Time-Intensive

Unit Testing

Figure 7: Wait time per assignment during peak and non-
peak hours. Peak hours are defined to be hours in which 5
or more assignments were submitted. Assignment titles are
given based on the titles of section 4.

longest running assignment, wait times grew during peak hours
as wait-times cascaded. Overall, however, we are pleased with the
wait times that resulted from non-peak submissions, which were
rarely greater than twice an assignment’s average grading time.

6 FUTURE WORK

Autograding the computer graphics course has suggested several
avenues for future improvements and research:

Sophisticated Image Comparison A simple MSE comparison
worked reasonably well across a variety of assignments. However,
it is likely that more sophisticated image comparison schemes could
have better evaluated student work for partial credit.

Autograding Performance Optimization and Transparency
Many students mentioned the long wait times to receive feedback
on their submission. In most cases this was due to lengthy, conser-
vative delays, e.g., to ensure completion of a ray traced rendering.
As these delays are scripted, students could be forewarned about
the estimated cumulative grading time. To decrease student wait
times in general, we will add dependencies between testcases and
adaptive termination to our system, so that submissions which fail
simple testcases will not run more complicated tests.

Ease of Use Utilities At present, keyboard and mouse action
specification must be done by hand. We would like to instead di-
rectly record a demonstration of the scripted sequence of actions.

System Optimization and Flexibility We plan to facilitiate
element-selectors and OCR or image recognition solutions for GUI
interaction in addition to coordinate-based mouse actions.

7 CONCLUSION

We have detailed a new system for automatically running and grad-
ing interactive computer graphics assignments within Submitty, an
open-source course management and automated grading platform.
Our system allows students to verify the functionality of their
work relative to the assignment specifications (and fix any errors).
Furthermore, the system eliminated the need for the instructor
or TA to manually test and re-run student work as part of the
grading process. Student applications were given a sequence of
scripted keyboard and mouse actions, and were then validated
using a built-in image difference metric. Feedback from students,
TA, and instructor indicate this prototype system was a success, and
we plan to expand upon and improve our system going forward.

Autograding Interactive Computer Graphics Applications SIGCSE 20, March 11-14, 2020, Portland, OR, USA

REFERENCES Only). In Proc. 49th ACM Tech. Symp. CSE (SIGCSE °18). ACM, New York, NY,
USA, 1087-1087. https://doi.org/10.1145/3159450.3162307

Aras Pranckevicius. [n.d.]. “Testing Graphics Code, 4 years later.” aras-p.info. https:
//aras-p.info/blog/2011/06/17/testing-graphics-code-4-years-later/, accessed on
2018-06-21.

Aras Pranckevicius. [n.d.]. “Testing Graphics Code.” aras-p.info. https://aras-
p.info/blog/2007/07/31/testing- graphics-code/, accessed on 2018-06-21.

[1] Christian Buhl and Fazeel Gareeboo. 2012. Automated testing: a key factor for
success in video game development. Case study and lessons learned. In Proc.
PNSQC. PNSQC. https://www.pnsqc.org/automated- testing-key-factor-success-
video-game-development-case-study-lessons-learned/

John DeNero, Sumukh Sridhara, Manuel Pérez-Quifiones, Aatish Nayak, and Ben
Leong. 2017. Beyond Autograding: Advances in Student Feedback Platforms. In

[10

[11

A

Proc. 2017 ACM SIGCSE Tech. Symp. CSE (SIGCSE *17). ACM, New York, NY, USA, [12] Selenﬁum HQ. [nd.]. “Selenium Homepage.” selenium.org. https://www.
651-652. https://doi.org/10.1145/3017680.3017686 seleniumhq.org/, accessed on 2018-07-01.) .o
[3] Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric [13] Selenium Master LLC. [n‘d‘]_' Selenium IDE Cumplete L{St ofComrrAlandsA se{em-
Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics ummaster.com. http:/ / selemum'mast'er,com/ sxtecor}tent{ index.php/ lntr&?ductlon—
and Interactive Techniques (SIGGRAPH *97). ACM Press/Addison-Wesley Publish- to-selenium-automation/selenium-ide/114-selenium-ide-complete-list-of-
ing Co., New York, NY, USA, 209-216. https:/doi.org/10.1145/258734.258849 commands, accessed on 2018-06-24.
[4] Vahid Garousi, Wasif Afzal, Adem Caglar, thsan Berk Isik, Berker Baydan, [14] Submitty. 201472219' http:/ www.sul?mlt”ty.org/
Seckin Caylak, Ahmet Zeki Boyraz, Burak Yolacan, and Kadir Herkiloglu. 2017. [15] T PLAN. [n.d.]. G_ame Test Automation.” t-plan.com. http://www.t-plan.com/
Comparing Automated Visual GUI Testing Tools: An Industrial Case Study. gam'e—te'st—automatlon/ , accessed on 201,8_0{)_21' X
In Proc. 8th ACM SIGSOFT (A-TEST 2017). ACM, New York, NY, USA, 21-28. [16] Chris Wilcox. 2015. The Role of Automation in Undergraduate Computer Science

Education. In Proc. 46th ACM Tech. Symp. CSE (SIGCSE °15). ACM, New York, NY,
USA, 90-95. https://doi.org/10.1145/2676723.2677226

Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student
Programs. In Proc. 47th ACM Tech. Symp. CSE (SIGCSE ’16). ACM, New York, NY,
USA, 437-442. https://doi.org/10.1145/2839509.2844616

Burkhard Wiinsche, Zhen Chen, Alex Shaw, Thomas Suselo, Kai-Cheung Le-
ung, Davis Muhajereen Dimalen, Wannes van der Mark, Andrew Luxton-Reilly,
and Richard Lobb. 2018. Automatic assessment of OpenGL computer graphics
assignments. 81-86. https://doi.org/10.1145/3197091.3197112

Lisa Yan, Nick McKeown, and Chris Piech. 2017. Deep Grade: A visual approach
to grading student programming assignments. In Proc. WiCV Conf. CVPR. WiCV.
http://web.stanford.edu/~yanlisa/

https://doi.org/10.1145/3121245.3121250

[5] Swapneel Mehta, Chirag Raman, Nitin Ayer, and Sameer Sahasrabudhe. 2018.
Auto-Grading for 3D Modeling Assignments in MOOCs. 51-53. https://doi.org/
10.1109/ICALT.2018.00012

[6] Robert Nagy, Gerardo Schneider, and Aram Timofeitchik. 2013. Automatic testing
of real-time graphics systems. In Int. Conf. TACAS. Springer, 463-477.

[7] Alfredo Nantes, Ross Brown, and Frederic Maire. 2008. A Framework for the
Semi-Automatic Testing of Video Games.. In Proc. 4th AIIDE. AAAL https:
//aaai.org/Papers/AIIDE/2008/AIIDE08-033.pdf

[8] OpenGL. [n.d.]. “OpenGL Homepage.” opengl.org. https://www.opengl.org/,
accessed on 2018-10-13.

[9] Matthew Peveler, Evan Maicus, Buster Holzbauer, and Barbara Cutler. 2018.
Analysis of Container Based vs. Jailed Sandbox Autograding Systems: (Abstract

(17

[18

=
L

https://www.pnsqc.org/automated-testing-key-factor-success-video-game-development-case-study-lessons-learned/
https://www.pnsqc.org/automated-testing-key-factor-success-video-game-development-case-study-lessons-learned/
https://doi.org/10.1145/3017680.3017686
https://doi.org/10.1145/258734.258849
https://doi.org/10.1145/3121245.3121250
https://doi.org/10.1109/ICALT.2018.00012
https://doi.org/10.1109/ICALT.2018.00012
https://aaai.org/Papers/AIIDE/2008/AIIDE08-033.pdf
https://aaai.org/Papers/AIIDE/2008/AIIDE08-033.pdf
https://www.opengl.org/
https://doi.org/10.1145/3159450.3162307
https://aras-p.info/blog/2011/06/17/testing-graphics-code-4-years-later/
https://aras-p.info/blog/2011/06/17/testing-graphics-code-4-years-later/
https://aras-p.info/blog/2007/07/31/testing-graphics-code/
https://aras-p.info/blog/2007/07/31/testing-graphics-code/
https://www.seleniumhq.org/
https://www.seleniumhq.org/
http://seleniummaster.com/sitecontent/index.php/introduction-to-selenium-automation/selenium-ide/114-selenium-ide-complete-list-of-commands
http://seleniummaster.com/sitecontent/index.php/introduction-to-selenium-automation/selenium-ide/114-selenium-ide-complete-list-of-commands
http://seleniummaster.com/sitecontent/index.php/introduction-to-selenium-automation/selenium-ide/114-selenium-ide-complete-list-of-commands
http://www.submitty.org/
http://www.t-plan.com/game-test-automation/
http://www.t-plan.com/game-test-automation/
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/3197091.3197112
http://web.stanford.edu/~yanlisa/

	Abstract
	1 Introduction
	1.1 Manually Grading Graphics Assignments
	1.2 Contributions

	2 Related Work
	2.1 Defining Full and Partial Correctness
	2.2 Automated Interaction
	2.3 Testing Methodologies

	3 System Design and Implementation
	3.1 Window Detection
	3.2 Input Specification
	3.3 Fault Tolerance
	3.4 Security
	3.5 Validation

	4 Results: Case Study
	4.1 Grading Time-Intensive Computation
	4.2 Step-by-Step Visual Unit Testing
	4.3 Wireframe for Grading Mesh Operations
	4.4 Physics Simulation Videos/Manual Grading
	4.5 Creative Solutions for Nondeterminism
	4.6 Automated Execution Without Validation
	4.7 Course Evaluation Responses

	5 Discussion
	6 Future Work
	7 Conclusion
	References

