
Comparing Jailed Sandboxes vs Containers
Within an Autograding System

Matthew Peveler
Rensselaer Polytechnic Institute

pevelm@rpi.edu

Evan Maicus
Rensselaer Polytechnic Institute

maicue@rpi.edu

Barbara Cutler
Rensselaer Polytechnic Institute

cutler@cs.rpi.edu

ABSTRACT
With the continued growth of enrollment within computer science
courses, it has become an increasing necessity to utilize autograd-
ing systems. These systems have historically graded assignments
through either a jailed sandbox environment or within a virtual ma-
chine (VM). For a VM, each submission is given its own instantiation
of a guest operating system and virtual hardware that runs atop the
host system, preventing anything that runs within the VM commu-
nicating with any other VM or the host. However, using these VMs
are costly in terms of system resources, making it less than ideal for
running student submissions given reasonable, limited resources.
Jailed sandboxes, on the other hand, run on the host itself, thus
taking up minimal resources, and utilize a security model that re-
stricts the process to specified directories on the system. However,
due to running on the host machine, the approach suffers as new
courses utilize autograding and bring their own set of potentially
conflicting requirements for programming languages and system
packages. Over the past several years, containers have seen growing
popularity in usage within the software engineering industry as
well as within autograding systems. Containers provide similar
benefits of isolation as a VM while maintaining similar resource
cost to running within a jailed sandbox environment. We present
the implementation of both a jailed sandbox and container-based
autograder, compare the running time and memory usage of the
two implementations, and discuss the overall resource usage.

CCS CONCEPTS
• Social and professional topics→ Computer science education;
Software engineering education; • Applied computing → Interac-
tive learning environments; Learning management systems;

KEYWORDS
Containers, Jailed Sandbox, Autograding, Docker
ACM Reference Format:
Matthew Peveler, Evan Maicus, and Barbara Cutler. 2019. Comparing Jailed
Sandboxes vs Containers, Within an Autograding System. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY,
USA, Article 4, 7 pages. https://doi.org/10.1145/3287324.3287507

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02.
https://doi.org/10.1145/3287324.3287507

1 INTRODUCTION
The demand for computing professionals across industries contin-
ues to grow. In conjunction, universities are seeing a growth in
enrollment in CS courses and are having to teach and grade larger
classes [3]. To handle this surge, many are turning to autograding
systems, whether they be commercial or homegrown, to provide au-
tomated feedback to students on their assignments [4]. Increasingly,
these systems are being seen as an absolute necessity for instructors
as it no longer feasible to provide adequate manual feedback on
each homework submission from a student [23]. In addition to this,
instructors may wish to use a variety of programming languages
and system resources to teach their courses. A study of CS1 courses
in the UK found that 13 different programming languages were
used [17]. Additionally, given that many of the languages identified
on that list release new versions at least annually (or in the case of
Javascript, a major revision biannually), ensuring the instructors
have a specific version within an autograding system requires a
flexible design, especially as instructors within the same depart-
ment may disagree about the specific version of a language they
wish to use for their courses.

We consider the following requirements necessary for a robust
and flexible autograding system. These aspects are independent of
the details of any assignment or grading evaluation criteria.

• A student should be able to submit an assignment multiple
times, and should receive prompt automated testing feedback
for each attempt.
• A student should not be able to view the submission files or
autograding results of any other student on the server.
• A student’s submission should be subjected to some limita-
tions on allowed runtime, memory usage, size of generated
artifacts, etc. to prevent runaway processes.
• A student may not affect the host system.
• A student may not utilize resources not explicitly granted to
them as part of the autograding process (such as accessing
the Internet).

Autograding systems have historically been implemented us-
ing either a jailed sandbox, which is fast and light on resources,
but hard to isolate specific versions of dependencies per assign-
ment, or a virtual machine/external server, which is slower, but
allows for a full separation of dependencies per assignment per VM,
assuming a unique VM per assignment configuration. Relatively
recently, containers have seen a surge in popularity within the
computing industry as a middle ground between jailed sandboxes
and virtual machines, drawing upon each environments’ strengths
while avoiding their weaknesses. These traits, therefore, suggest
that containers are potentially ideal for autograding. Within this

https://doi.org/10.1145/3287324.3287507
https://doi.org/10.1145/3287324.3287507

paper, we examine and draw comparisons between the jailed sand-
box environment versus utilization of containers. For the latter,
we utilize the Docker [5] platform, which has greatly popularized
usage of containers in both industry as well as for autograding.
Through the course of the paper, we use Docker interchangeablely
with containers, but recognize that containers predates Docker, and
that there are alternatives, such as Core OS rkt[19], for creating and
managing containers. Virtual Machines and external servers (such
as the Amazon EC2 platform [2]) are omitted from consideration.
Utilization of VMs for proper isolation proves far too heavy in terms
of used system resources as well as boot times, which often takes
over a minute. While we could leave a VM booted continuously
to avoid the boot time, we would then have to load the required
dependencies for multiple courses/assignments such that it would
then have the same issues as the jailed sandbox. Additionally, a
booted VM generally requires upwards of 512MB of RAM which
it will consume so long as it lives so that it can perform tasks that
make sense within a desktop/server environment, but not necessar-
ily for autograding. External servers are rejected due to the high
associated cost of running them throughout the semester and/or
explicit fees per submission per unit of autograding time. Further-
more, external servers face many of the same problems as VMs in
addition to connection delays between the submission server and
the external testing server.

In this paper, we provide a comparison of a jailed sandbox en-
vironment versus using containers for autograding. In Section 3,
we introduce Submitty [21], our open-source course management
platform for collecting, automated testing, and automated grading
of programming assignments. In Section 4, we describe our jailed
sandbox autograding implementation and the pros and cons of this
approach. In Section 5, we discuss our implementation of auto-
grading via Docker and its strengths and weaknesses. In Section 6,
we measure the performance of these two approaches, covering
resources used on the machine as well as time spent grading an
assignment. In Section 7, we conclude our paper and discuss promis-
ing future lines of research for this work.

2 RELATEDWORK
Many different autograding platforms have been created focusing
on different aspects of the process. The first comprehensive surveys
were done of such systems and their history in 2005 [1, 6]. Ihantola
et al. point out in their survey of autograders that even thoughmany
of the developed prototypes are not open sourced or released [11].
However, the systems do have common functionalities. Additionally,
prior work has been done to document many of the potential attack
vectors a student may use in their submission [7] that a robust
autograding environment must be able to handle.

Furthermore, while prior work discusses autograders, what they
should do, and how they should operate [24], they largely gloss
over the exact specifics of the environment within which they
operate and provide little context for why they decided on a given
environment. Additionally, beyond work done by Špaček et al. on
how one might structure an autograder to utilize Docker [20], there
is very little literature on using Docker for autograding, or the
considerations one must take in using it. To our knowledge, there
does not exist a work that provides a comparison of resource usage

and throughput of a jailed sandbox vs. Docker for an autograding
environment.

3 OUR AUTOGRADER IMPLEMENTATION
Within our university, we have implemented our own open source
autograding system, Submitty [21]. Submitty has been in use in the
Computer Science Department at Rensselaer Polytechnic Institute
since 2014, and during the last year, was used by a dozen courses per
semester with more than 2000 enrolled students combined. For our
deployed server installation we use Ubuntu 18.04 and the packages
that come with it, but Submitty also supports for Ubuntu 16.04
and Debian 7. Within this system, we have support for about 8
programming languages (e.g. Python, C++, Java, C, Scheme) used
in our courses, as well as an equal number of instrumentation
packages to performance static analysis, monitor memory usage,
run test suites, etc.

To create a new assignment, an instructor writes a JSON specifi-
cation file that describes any necessary compilation steps for the
assignment, the testcases to be run, and how to validate the output
from the code, most commonly using some variation of Myer’s
Diff [18] (e.g. doing a strict diff, allowing for lines to appear in
any order, ignoring whitespace differences) or through usage of an
automated test suite, like JUnit [12]. Students can re-submit the as-
signment multiple times before the submission deadline, each time
receiving feedback on the success or failure of the non-hidden auto-
mated tests. Note: We suggest that instructors include additional
hidden test cases to ensure that students do not simple hard-code
solutions to the published test suite. Once the submission deadline
is passed, student work may be further assessed manually by an
instructor or TAs via an web interface that shows a rubric, as well
as the output of each individual testcase, as well as the student’s
submitted code.

The instructor specifies how they wish students to submit to
the server, either utilizing a drag-and-drop interface, or by using
Git [9] version control wherein the server will clone the student’s
repository. The autograding pipeline is modular and allows for
selection and customization of alternative grading methods (e.g.,
jailed sandbox vs. Docker) from within the JSON configuration.
The Submitty system configuration allows specification of the over-
all number of concurrent autograders (based on server hardware
specifications). We utilize this system and its associated autograd-
ing pipeline to analyze these two environments to compare and
contrast the performance of the two implementations.

4 AUTOGRADING VIA JAILED SANDBOXES
A popular approach to handling autograding is to utilize a jailed
sandbox environment, which is conceptually straightforward. In a
jailed sandbox, the autograding process is run directly on the host
machine utilizing whatever services/packages have been installed
there. To achieve the secured sandbox so as to achieve our previ-
ously stated requirements, we have sufficient untrusted users. These
users only have access to files within a specific workspace directory
with access restricted to a single untrusted user. The autograding
process for a student submission is then roughly as follows:

(1) Copy a student’s submission into the untrusted userworkspace
(2) Compile the student’s submission as that untrusted user

(3) Run the testcases for the student’s submission as that un-
trusted user

(4) Validate the results from the testcases
(5) Move the final results out of the untrusted user workspace

To perform this process, a user with a higher permission level
does the first action of copying in the required files. The higher level
user then executes the compilation, testing, and validation script as
the reduced-privilege untrusted user. To further enhance security
we could also use chroot to more robustly restrict the workspace to
the working directory and to ensure that the untrusted user cannot
access any files on the system with mistakenly set permissions
and removing any environment settings for the system so as to
prevent the untrusted user from accessing them. To restrict the
actions and resources available to the student code, the untrusted
user is limited to a whitelist of allowed system calls using the Linux
seccomp library [22].

To protect the host system from programs that may unintention-
ally, accidentally, or maliciously hog CPU or RAM, open excessively-
many files, attempt to write infinite length files, or “fork-bomb” the
system with too many threads or processes, RLimits are put in place
on the executing process. Anytime a process attempts to violate
one of these limits, a related signal is sent to the process (such as
SIGXCPU for using too much of the CPU), which is then translated
internally to a SIGKILL on execution of the student’s code.

While the jailed sandbox is in some ways straightforward and
efficient, it also has significant drawbacks, principally in what re-
sources remain available to the student code. Because student code
is being run directly on the host machine, any program or package
that’s installed on the machine could potentially be run by the
student. Students may have access to programs that an instructor
did not want a student to use and did not even realize is installed
on the host. While an instructor can use a seccomp to prevent a
student from running additional processes from their code, if that
filter is not used, then a student would potentially exec any pro-
gram installed on the machine. However, while it is possible to
handle this via a more complex virtualization of the filesystem, this
adds additional complication for setting up an assignment for an
instructor and for a system administrator to ensure correctness.
Furthermore, many programming languages, such as Python, make
use of modules. These modules are often times installed globally on
the system such that any user may use them, which may complicate
things when one class expressly wants students to use a module
that another class directly forbids. Some of these languages feature
methods of creating "virtual environments" that only have access to
specific modules installed into the environment, utilization of them
is language specific and complicated to fold into a jailed sandbox,
while still maintaining an ease of use to instructors.

5 AUTOGRADING VIA DOCKER
An alternative to autograding via a jailed sandbox is to use con-
tainers. While much of the underlying technology of containers
(such as cgroups and namespaces) have been around for over a
decade, they have received a lot of recent attention due to Docker,
which has allowed a lower barrier of entry to using containers.
Containers provide a lightweight alternative to virtual machines,
while still providing isolation of running processes from the host

machine. This is accomplished by providing virtualization at the
operating system level, which allows use of resources of the host
system and its kernel. Containers share the base components of
their runtime with the host as well as other containers which leads
to a smaller footprint in running the containers. This is in contrast
to VMs which perform their virtualization at the hardware level
and prevent sharing of resources with other VMs. To make use of
containers, much like for a VM, one needs to create an image that
is used to create independent, isolated containers. We can easily
create specialized container images targeting a specific language
or specific packages without impacting other courses or existing
assignments. This allows instructors to create unique environments
for their courses, with whatever languages or packages they might
want without affecting the host system or the containers prepared
for other courses or assignments. Additionally, through the use
of containers, it becomes possible to automatically test and grade
networked or distributed programs that utilize isolated networks
wherein the containers communicate to each other [13, 16].

The autograding process for Docker adds some additional steps
over the jailed sandbox environment:

(1) Copy a student’s submission into untrusted user workspace
(2) Create a container, mounting the untrusted user workspace

to that container
(3) Execute the compilation step for an assignment
(4) Execute each testcase for the assignment
(5) Execute validation over the test cases results
(6) Destroy the container
(7) Move the results from the untrusted user workspace
We still utilize our implementation of a jailed sandbox inside

of the container for added security and per testcase resource re-
strictions. Docker can be configured to similarly limit the CPU and
memory a container uses. While this does effectively cover a similar
effect as some of the RLimits from before, we still require RLimits
to limit the size of files created by runaway processes.

5.1 Security Considerations
By default, utilization of a container provides isolation of automated
testing of a student’s submission from other students as well as the
host machine. Additionally, by default, a container is not allowed
to communicate with the outside Internet. In addition to these
container-specific details, we also utilize parts of the security model
built around the sandbox environment. This means that within
our container, we utilize seccomp to specify what system calls are
allowed to be made in execution of their programs. However, it
should be noted here that given that one could run any OS within
a container, not just one matching the host, a common pitfall of
seccomp is to not consider how a different OS may require different
filter flags to achieve the same result within seccomp [8].

However, unlike in the sandbox environment, the default user
that runs a process within a Docker container is root. Additionally,
the folder that was mounted into the container in step (2) above
has the same owner/group as the host system. This means that
it’s not enough to simply not run as root, but rather we must run
as the same untrusted user inside the container that owns that
workspace. While it’s possible to exec a command on container
creation to create the necessary user, Docker also allows one to

pass in a specific group ID (GID) and user ID (UID) to execute all
commands within a container under. These IDs need not exist on
the container, and so long as you do not attempt to get the name of
the user/group (such as via whoami), this works seamlessly, and
removes the risk of running programs within the container as root.

5.2 Docker Images
A necessary step of autograding via Docker containers is the cre-
ation of Docker images. For VM images, a user generally installs
an OS, installs some packages, and then creates an archive out of
the resulting image or uses provisioning software (e.g. Chef, Salt,
Puppet) with its own format to create an image. These steps are
either manually labor-intensive in the case of the former or require
knowledge of the specialized format in the latter. In contrast, Docker
images are specified by creating a Dockerfile. This file begins with
a base image (major linux distros such as Ubuntu and Debian are
available as base images) is specified to build from and then a series
of RUN commands to be executed on that base image using the
default shell of that distro (e.g. bash). Docker then handles getting
the base image and running each command, returning a built image,
without requiring the user to manually type the commands inside
the VM. However, to produces the smallest possible Docker images,
one must condense run commands as much as possible and not add
unnecessary packages. Listing 1 presents a sample Dockerfile built
from the Debian base image.

1 FROM deb ian : s t r e t c h −s l im
2

3 RUN apt−ge t update \
4 && apt−ge t −y −−no− i n s t a l l −recommends i n s t a l l \
5 grep \
6 l i b seccomp −dev \
7 l i b s e c comp2 \
8 && rm − r f / var / l i b / ap t / l i s t s / ∗
9

10 CMD [" / b in / bash "]

Listing 1: Example Dockerfile

To keep the size of Debian and Ubuntu images small, we use
the no-install-recommends flag, we remove the cache of available
packages created by the apt-get update command, and we execute
these commands in a single RUN line. The choice of base image is
significant as well. Table 1 presents the base size of four popular
Docker images.

Image Size
alpine:3.8 4.41MB
ubuntu:18.04 84.1MB
debian:stretch-slim 55.3MB
debian:stretch 101MB

Table 1: Popular Docker images and their sizes

While it would seem that onewouldwant to always useAlpine [15]
thanks to its very small footprint, it can be more difficult to add
the necessary programs and packages. For example, Alpine does
not come with the glibc and it is not easy to build packages like
Clang6 without prior Alpine experience. Thus, we selected the

debian:stretch-slim image thanks to its more familiar interface, gen-
eral ease in building any package, relatively small size, and similar-
ity to our host OS Ubuntu (to avoid problems with seccomp).

Submitty allow instructors to specify their own complete Dock-
erfile, or use our simple command-line interface to mix and match
Dockerfile components (such as Python 3.6, Clang 6, Java8, etc.) and
specify additional system packages and languagemodules.Instructors
specify the appropriate Docker image within the assignment con-
figuration JSON. Additionally, these images can be distributed to
students for use during offline development and testing.

6 PERFORMANCE ANALYSIS
While containers are billed as being lightweight compared to virtual
machines, they are not as lightweight as a jailed sandbox, due to
the additional OS virtualization layer. To analyze these costs, we
identified several busy periods of student submissions from a prior
term. Even the busiest time periods did not overwhelm the CPU
or memory resources of our server hardware (which is ensured by
our conservative limit of the machine to grading at most ten assign-
ments in parallel). We selected the busiest four hour period during
the Fall 2017 that semester – a time period with ∼540 unique sub-
missions in our CS1 and CS2 courses. The period selected occurred
the night of their common assignment deadline and happened on
the 9th week of the semester when both classes are tackling more
compute-intensive assignments. The submissions gave us a mix of
perfect full-credit submissions, submissions earning partial credit,
submissions that failed to compile or run at all, and submissions
that entered into infinite loops. We then took this time period
and replayed it (and repeated the time period) with different time
speedups over an hour to artificially stress the hardware and test
the scalability. We also increased the number of allowed concurrent
autograding processes. We repeated each simulation twice, running
it first under the jailed sandbox setup, and then running it using
Docker containers. Fo the Docker test, we prepared a single "mas-
ter" image with both Python and C++, and additional utilities used
by CS2, such as Valgrind, as well as some extraneous packages, with
a total image size of 2.1 GB. The system hardware we utilized for
these tests was a Dell Poweredge R520 with an Intel Xeon ES-2470
(20 Cores, 40 Threads) CPU and 32 GB of RAM.

During the execution of the time period we measured the fol-
lowing statistics:

• Number of active graders every 0.1 seconds
• CPU utilization percentage every 0.1 seconds
• Memory usage every 0.1 seconds
• Time taken for a submission to be executed and graded
• Time spent by a submission waiting in the queue for grading
to begin
• Time spent creating a container (for Docker)
• Time spent destroying a container (for Docker)

These measures were then averaged over every minute within
the one hour. For time spent, for any minute that did not have
any processes either finish grading or finish waiting, we took the
average of its nearest neighbors that did have those values. We then
plotted the system performance metrics against each other in terms
of percentage used versus the overall amount available and then

Figure 1: Resource usage for 4X simulation

Figure 2: Average time spent for 4X simulation

created a plot of the average time spent grading and average time
spent waiting.

6.1 Results
For our first considered simulation, we took the four hour block
and replayed it once within an hour block (4X the recorded load).
Within that block, we allowed for 10 concurrent graders to operate.
The results of this simulation are shown in Figures 1 and 2. The
CPU used for Docker versus the jailed system are roughly equiva-
lent. The RAM, while higher for Docker, had on average less than a
percent difference. The time used for grading is also roughly compa-
rable, with an average of 0.6 seconds more spent for Docker versus
the jailed sandbox and then an almost equal time spent waiting
for each submission throughout. However, we see Docker has two
periods where the wait time deviates from the jailed sandbox wait
time (the first around 3 seconds and the second around 2 seconds).
Just before the assignment deadline (at the end of the 4 hour win-
dow) the machine has reached our conservative limit of concurrent
autograding processes. This happens because for each container,
we spent around ∼1.4 seconds for creating the container, and about
∼1 second for destroying the container, making each grader last an

Figure 3: Resource usage for 16X simulation

extra ∼2.4 seconds with Docker versus the jailed sandbox. While
the production server could handle this load without an increase in
wait time, the slight overhead of Docker did result in a small wait
time for the equivalent simulation replay.

For our second presented simulation, we took the same four hour
block and condensed it to 15 minutes, and then replayed that 4x to
make up the hour (effectively a 16X of realtime recorded load). We
also bumped up the number of allowed concurrent graders to be 28
to partially handle the simulated increase in submissions per hour.
Note that the number of concurrent graders is still less than the
number of threaded cores on the machine (40), which should not
unduly stress the machine for the single-threaded student assign-
ments in our CS1 and CS2 courses. The results of this simulation
are shown in Figures 3 and 4. Here, we see that Docker ends up
utilizing all of the concurrent graders for a large fraction of the
simulation hour. This ends up causing Docker to start utilizing
more RAM (with a peak difference of about 15%) and CPU (with
a peak difference of about 5%). The jailed sandbox environment
on the other hand never needed to use all of the graders at one
time. More importantly, we see a far more drastic change in the
amount of time taken to grade an assignment and the wait time
per submission. Docker, once maxed out, with the additional time
cost of creating and destroying containers, cascades through the
system to subsequent submissions, giving larger fluctuations in the
amount of time spent waiting for an assignment to start grading,
which at the worst of times added almost an additional 25 seconds
of waiting, and on average was above 10 additional seconds. By
contrast, the jailed sandbox ran more efficiently, maintaining a wait
time that was close to zero seconds spent waiting per submission.
While under the full load of the concurrent graders, we saw that
the time taken on average to create a container to be 7.4 seconds
and destroying a container to be 3.3 seconds.

6.2 Discussion
From these results, we can conclude that while containers do have
a cost related to them in terms of resources, the primary cost is
paid in terms of time taken with container creation and destruction.
Even when not all graders were being utilized on a machine, each
student on average experienced an additional 2 seconds slowdown

Figure 4: Average time spent for 16X simulation

per submission. However, once the server was under a full load, that
time rose to an average of almost 11 seconds per submission. While
not a drastic change in time taken, any time increase to a student is
disliked, especially during that the busiest and most stressful period
before the assignment deadline.

The spikes in the grading time in the data largely corresponded
to students who had submitted programs that had infinite loops
that would therefore run for several minutes until finally being
killed off by the system via the RLimit. While this affected the
average grading time for an assignment in the time slice where it
occurred, more importantly, it meant that a grader was taken out
of circulation for an abnormally long time which ended up causing
a cascade effect on other graders that were potentially similarly
hogged and which ended up causing more severe fluctuations in
wait time and grade time for submissions.

Finally, the image that we was used for these test was not special-
ized per class or per assignment, rather bringing in all packages that
might be needed for multiple courses, resulting in a relative large
image size. By creating more specialized images per course and per
assignment, we may see that the amount of time taken in creation
and destruction of a container decreases as well, while secondarily
also not requiring as much space on the host environment’s hard
drive to store the container.

We did attempt to test Docker underneath additional concurrent
graders (up to 40) for the 16X simulated test case; however, the
system was not stable. Grading processes would crash when con-
tainer creation failed showing a definite limitation of using Docker
for autograding. When we equivalently bumped up the number
of concurrent graders for the jailed sandbox environment beyond
the number of threads on the machine, the system and grading
processes ran slower, but remained stable and operational. More
development will be needed to tune the system and robustly handle
near-capacity autograding load in containers.

7 CONCLUSION
Given the results of our performance testing, switching from the
jailed sandbox to Docker containers for autograding is quite promis-
ing. In this work, we discussed the configuration, strengths, and
weaknesses of both implementations. We analyzed the CPU and

RAM utilization and timing statistics over the lifetime of the au-
tograding processes for submitted assignments. Through this, we
found relatively negligible differences in performance between the
two environments, except when the machine was under a signifi-
cant load at which point containers started to perform much worse
in terms of time taken for container creation and destruction. Over-
all, we believe that the strengths of containers far outweigh the
weaknesses, with the caution that care should be taken to tune the
system configuration for large loads and further investigate issues
impacting of system robustness.

In this work, we utilize a simplistic view of the container life
cycle as it is applied to autograding. As shown in Section 5, within a
single autograder process, a container is created, the student’s code
is run and evaluated, and then the container is destroyed. However,
as shown in Section 6, most of the time cost of using a container
is in the construction and destruction portions of that life cycle.
Looking forward, we would like to investigate ways to mitigate
these costs so that to a student, the time cost of using a container
vs a jailed sandbox is relatively equal. We first consider the startup
cost.

To improve this, we take inspiration from other sources (e.g. web
servers, databases) and how they handle fluctuations in load. With
these services, it is common to define a "pool" of available workers
for a given process, oftentimes defining a minimum number of
workers in the pool as well as the maximum size that it can grow to.
Similarly, for the containers, we can work to maintain a container
pool such that for a new submission, it can take a container from
the pool instead of having to create the containers on-demand for
all submissions. However, unlike the aforementioned examples, to
maintain the flexibility that container usage affords us, we must
further investigate algorithms to handle which container images
we need to fill our pool with. As a first step in this direction, we can
maintain a count of images used within some time frame, and then
fill our pool with the most used images within that frame, with
the expectation that the next submission will draw from the same
distribution. Further work around this would be to investigate and
utilize forms of machine learning and analysis to allow us to tune
this pool on demand.

Opposite the start up time of containers, to improve the de-
struction time, we can offset this process to be done outside of
the core process of autograding of a submission. To do this, we
can create a container garbage collector that cleans up containers
asynchronously at some fixed interval. Implementations of these
strategies, while allowing for a better throughput has to be balanced
out with the potential increase in number of containers that may
exist at one time, especially in regards to a GC for recycling old
containers. As stated, in Section 6, we found that once we had too
many running containers at once, Docker would start to error out
in attempting to create more.

REFERENCES
[1] Kirsti M Ala-Mutka. 2005. A Survey of Automated Assessment Ap-

proaches for Programming Assignments. Computer Science Educa-
tion 15, 2 (2005), 83–102. https://doi.org/10.1080/08993400500150747
arXiv:https://doi.org/10.1080/08993400500150747

[2] Amazon. 2006-2018. Amazon EC2. https://aws.amazon.com/ec2/
[3] Computing Research Association. 2017. Generation CS: CS Undergraduate Enroll-

ments Surge Since 2006. Technical Report.

https://doi.org/10.1080/08993400500150747
http://arxiv.org/abs/https://doi.org/10.1080/08993400500150747
https://aws.amazon.com/ec2/

[4] John DeNero, Sumukh Sridhara, Manuel Pérez-Quiñones, Aatish Nayak, and Ben
Leong. 2017. Beyond Autograding: Advances in Student Feedback Platforms. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). ACM, New York, NY, USA, 651–652. https://doi.org/10.
1145/3017680.3017686

[5] Docker. 2013-2018. https://www.docker.com/
[6] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic Test-

based Assessment of Programming: A Review. J. Educ. Resour. Comput. 5, 3,
Article 4 (Sept. 2005). https://doi.org/10.1145/1163405.1163409

[7] Michal Forisek. 2007. Security of Programming Contest Systems.
[8] Tal Garfinkel. 2003. Traps and Pitfalls: Practical Problems in System Call Interpo-

sition Based Security Tools. In Proceedings of the Network and Distributed System
Security Symposium (NDSS).

[9] Git. 2005-2018. https://git-scm.com/
[10] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bartos, Jay

Shah, Danielle Yucht, and Thu D. Nguyen. 2018. Providing Meaningful Feedback
for Autograding of Programming Assignments. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (SIGCSE ’18). ACM, New
York, NY, USA, 278–283. https://doi.org/10.1145/3159450.3159502

[11] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling ’10). ACM, New York, NY, USA, 86–93. https:
//doi.org/10.1145/1930464.1930480

[12] JUnit. 2018. https://junit.org/junit5/
[13] Federico Kereki. 2015. Concerning Containers’ Connections: On Docker Net-

working. Linux J. 2015, 254, Article 2 (June 2015). http://dl.acm.org/citation.
cfm?id=2807678.2807680

[14] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (SIGCSE ’18). ACM, New
York, NY, USA, 284–289. https://doi.org/10.1145/3159450.3159602

[15] Alpine Linux. 2018. https://alpinelinux.org/
[16] Evan Maicus, Matthew Peveler, Stacy Patterson, and Barbara Cutler. 2019. Auto-

grading Distributed Algorithms in Networked Containers. In Proceedings of the
2019 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’19). ACM, New York, NY, USA.

[17] Ellen Murphy, Tom Crick, and James H. Davenport. 2017. An Analysis of In-
troductory Programming Courses at UK Universities. Programming Journal 1
(2017), 18.

[18] Eugene W. Myers. 1986. An O(ND) difference algorithm and its variations.
Algorithmica 1, 1 (01 Nov 1986), 251–266. https://doi.org/10.1007/BF01840446

[19] Core OS. 2014-2018. rkt. https://coreos.com/rkt/
[20] František Špaček, Radomír Sohlich, and Tomáš Dulík. 2015. Docker as Platform

for Assignments Evaluation. Procedia Engineering 100 (2015), 1665–1671.
[21] Submitty. 2014-2018. http://www.submitty.org/
[22] Wikipedia. 2018. Seccomp. https://en.wikipedia.org/w/index.php?title=

Seccomp&oldid=853577449 [Online; accessed 27-August-2018].
[23] Chris Wilcox. 2015. The Role of Automation in Undergraduate Computer Science

Education. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). ACM, New York, NY, USA, 90–95. https://doi.
org/10.1145/2676723.2677226

[24] Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student
Programs. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, NY, USA, 437–442. https:
//doi.org/10.1145/2839509.2844616

https://doi.org/10.1145/3017680.3017686
https://doi.org/10.1145/3017680.3017686
https://www.docker.com/
https://doi.org/10.1145/1163405.1163409
https://git-scm.com/
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1930464.1930480
https://junit.org/junit5/
http://dl.acm.org/citation.cfm?id=2807678.2807680
http://dl.acm.org/citation.cfm?id=2807678.2807680
https://doi.org/10.1145/3159450.3159602
https://alpinelinux.org/
https://doi.org/10.1007/BF01840446
https://coreos.com/rkt/
http://www.submitty.org/
https://en.wikipedia.org/w/index.php?title=Seccomp&oldid=853577449
https://en.wikipedia.org/w/index.php?title=Seccomp&oldid=853577449
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/2839509.2844616

	Abstract
	1 Introduction
	2 Related Work
	3 Our Autograder Implementation
	4 Autograding via Jailed Sandboxes
	5 Autograding via Docker
	5.1 Security Considerations
	5.2 Docker Images

	6 Performance Analysis
	6.1 Results
	6.2 Discussion

	7 Conclusion
	References

