
Autograding Distributed Algorithms in Networked Containers
Evan Maicus

Rensselaer Polytechnic Institute
maicue@rpi.edu

Matthew Peveler
Rensselaer Polytechnic Institute

pevelm@rpi.edu

Stacy Patterson
Rensselaer Polytechnic Institute

sep@cs.rpi.edu

Barbara Cutler
Rensselaer Polytechnic Institute

cutler@cs.rpi.edu

ABSTRACT
We present a container-based system to automatically run and
evaluate networked applications that implement distributed algo-
rithms. Our implementation of this design leverages lightweight,
networked Docker containers to provide students with fast, accu-
rate, and helpful feedback about the correctness of their submitted
code. We provide a simple, easy-to-use interface for instructors
to specify networks, deploy and run instances of student and in-
structor code, and to log and collect statistics concerning node
connection types and message content. Instructors further have
the ability to control network features such as message delay, drop,
and reorder. Running student programs can be interfaced with via
stream-controlled standard input or through additional containers
running custom instructor software. Student program behavior
can be automatically evaluated by analyzing console or file output
and instructor-specified rules regarding network communications.
Program behavior, including logs of all messages passed within the
system, can optionally be displayed to the student to aid in devel-
opment and debugging. We evaluate the utility of this design and
implementation for managing the submission and robust and secure
testing of programming projects in a large enrollment theory of
distributed systems course. This research has been implemented as
an extension to Submitty, an open source, language-agnostic course
management platform with automated testing and automated grad-
ing of student programming assignments. Submitty supports all
levels of courses, from introductory to advanced special topics, and
includes features for manual grading by TAs, version control, team
submission, discussion forums, and plagiarism detection.

CCS CONCEPTS
• Computing Education→ Computing Education
Programs; Computer Science Education;

KEYWORDS
Distributed Systems, Testing, Autograding, Container

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287505

ACM Reference Format:
Evan Maicus, Matthew Peveler, Stacy Patterson, and Barbara Cutler. 2019.
Autograding Distributed Algorithms in Networked Containers. In Proceed-
ings of the 50th ACM Technical Symposium on Computer Science Education
(SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3287324.3287505

1 INTRODUCTION
Testing and grading networked programming assignments is a com-
plex endeavor. As a first step, the tester must distribute student
code to many nodes — running either locally or remotely — each
of which must be configured to properly execute the student appli-
cation. These nodes must be configured to communicate with one
another, often utilizing manually-specified ip addresses and ports.
It is possible to run all instances of student code from a single host;
however, the algorithm will be less likely to encounter the realities
of networked communication over the Internet, including delays,
packet loss, and packet corruption or duplication. Once the student
assignment is installed, running, and networked on all nodes, the
grader must interface with it. Manual testing is often conducted
via multiple ssh terminals to provide a sequence of input to the
different nodes. It can be difficult to satisfactorily test resilience to
simultaneous inputs across many hosts.

1.1 Manual Testing & Grading
Manual grading of distributed applications is typically done by
issuing a command, waiting for the system to react and stabilize,
and then checking the resulting state of the system. Student code
is usually viewed by the instructor as a black box, as even a correct
implementation could result in different outputs on subsequent
runs due to issues of concurrency and network delay. Take, as an
example, manually grading a distributed calendar application, in
which no two events may be scheduled at the same time for the
same user, but in which any user many enroll another in an activity.
First, a command from the instructor might prompt a node in the
system to enter an event into the calendar. The instructor, then,must
wait while the nodes of the network determine whether the newly
entered event is non-conflicting. When the system has stabilized,
the instructor can check each node to see whether they agree on
the state of the calendar. If all nodes agree on a valid calendar, the
student receives credit for this rubric item. If the student’s results
are invalid, or, worse, one or more of the student nodes crash, the
instructor must adapt, restart the grading system, or award the
student zero credit on subsequent tests.

https://doi.org/10.1145/3287324.3287505
https://doi.org/10.1145/3287324.3287505

1.2 Grading by Live Demonstration
As a result of these difficulties, instructors may opt to schedule in-
person code demonstration sessions during which students bring
their completed assignments and run them through a series of live
testcases. Because the student is presumably well acquainted with
their own implementation and interface, they can more rapidly
configure and manipulate the system to demonstrate adherence
to assignment specifications. The student arrives with the code
already configured and running on multiple hosts, allowing the
demonstration time to focus on providing test inputs to the system
and discussing the output and implementation details. However,
even live demos have hiccups with unexpected bugs and the in-
structor often must think on their feet, as it is not often possible to
restart testing altogether. As a result, if live testcase 1 is a failure,
the expected output from live testcase 2 must be adjusted. Some-
times, however, failures are so catastrophic that testcase 2 becomes
impossible.

1.3 Contributions
Our contributions are as follows:

• We present the design and implementation of a system for
automatically running and grading networked, distributed
applications within Submitty, an open source course man-
agement and autograding system [12].
• The design allows instructors to manipulate network fea-
tures such as message delay and loss on a per-connection
basis, to enforce restrictions regarding which nodes are al-
lowed to communicate, to require that student code uses a
particular protocol (e.g., TCP or UDP) to pass messages, and
to connect and disconnect nodes from a network.
• Our system allows instructors to interface with and pro-
vide input to running student distributed applications in a
scripted way, facilitating automated testing of student code.
• The system logs information about all messages and message
content passed between the networked nodes. This log can
be leveraged to automatically evaluate the efficiency of an
implementation and may also be provided to students as a
learning aid and debugging tool.
• The module for the generation of container networks and
deployment of student code can also be as a standalone tool.
This tool may be utilized by students during development
and by instructors to facilitate live student demonstrations.

2 RELATEDWORK
As enrollment sizes have increased in Computer Science programs,
professors have turned to autograding solutions, both commer-
cial [4], and homegrown [15]. The use of such automated grading
platforms has been claimed to be an economic [16] and logisti-
cal [15] necessity for the professors and institutions that are able
to employ them. However, not all programming assignments are a
good fit for the traditional autograding scheme of running a single
instance of student code, piping it inputs, and then difference check-
ing its output against a known solution. In particular, autograding
assignments that require networked instances of student code are
not feasible in the majority of autograding solutions.

This apparent lack of support is due at least in part to the diffi-
culties of automatically testing the correctness of distributed appli-
cations. Issues of concurrency and sub-optimal network conditions
yield outputs that are difficult to debug, as “happens before” rela-
tionships can be impossible to establish without a reliable global
clock [3]. This issue is exacerbated by the problem of distributed
state, which makes log and output analysis a challenging task. To
combat issues of concurrency and nondeterministic message or-
derings, some systems decompose tests into a set of abstract pre-
and post- conditions, rather than defining a single, fixed valid out-
put [8]. In such a testcase, a precondition might be that the state of
a distributed calendar is inconsistent because a conflicting event
has been entered. The postcondition, then, would be that a valid cal-
endar is decided upon by the nodes in the network. Other systems,
meanwhile, attempt to sidestep the problem of concurrency entirely
by testing distributed applications component by component [14].
In such systems, rather than passively assessing a distributed system
as it runs, unit tests are performed by “separating system compo-
nents from the environment.” In contrast, other testing frameworks
aim to allow developers to subject their applications to the full
wrath of a stressful network. This can be done by integrating a
transparent “degrader”, which sits between the nodes of a system
and intercepts all messages. The degrader acts as a relay, and can
modify message content, delay, and drop rates. [7]. Alternatively, a
less intrusive approach can be taken to inject delays via a network
emulator directly on connections between network nodes without
the need for interception [1, 13]. This process, known as “fuzzing,”
is necessary to tease out unknown errors from a system. Packet
loss rates of about 0.1% are expected in realistic conditions — a
packet loss rate of 1% is considered problematic and 5% is a “severe
failure” [10].

3 SYSTEM REQUIREMENTS
Our system was designed to support RPI’s Distributed Systems
and Algorithms course, an elective of the Computer Science major
taken by juniors, seniors, and graduate students. To fairly, robustly,
and efficiently test and evaluate student work, the autograder must:

• Automatically create a reasonably sized student net-
work.Manual testing during live demos of typical projects
for this course requires as many as eight student nodes. The
hardware for the server should therefore be able to run a
minimum of eight simultaneous containers.
• Keep network specification simple but powerful. Net-
work configuration should have reasonable default values
so that instructors can quickly build autograders for simple
examples, while remaining customizable to facilitate and
control complex test cases.
• Facilitate scripted interaction via standard input and
capture of all programoutput. Automated validation and
scoring can be performed on captured program output.
• Support common message passing protocols and a va-
riety of programming languages. We have implemented
and tested support for both TCP and UDP protocols, and stu-
dents have chosen from Java or Python for their implemen-
tations. The Submitty platform supports a comprehensive
set of programming languages.

• Be highly reusable. The automated creation of networks
and deployment of student code is a useful tool indepen-
dent of the autograding pipeline. This module should be self
contained, so that it can be leveraged by students during
development and by instructors for additional, unscripted
testing and grading.
• Provide an interface for professors to subject student
programs to stressful network conditions. Subjecting
distributed applications to stressful but realistic conditions
can be useful in revealing hidden implementation issues [7,
10]. To this end, our system should include tools with which
instructors can subject student assignments to network con-
ditions including packet loss, corruption, duplication, and
delay.
• Provide studentswithmeaningful feedback for debug-
ging purposes.Automated grading is not only about assign-
ing students a numeric grade, it is also an opportunity to
help them understand why they did not receive full credit
and (if allowed by the course syllabus) to revise and resubmit
their projects. Like other autograding platforms, Submitty
supports multiple submissions [15] and access to files, stan-
dard output, and message logs produced during testing to
facilitate debugging of distributed applications [3].

4 IMPLEMENTATION
4.1 Isolating Docker Communications
For the implementation of our system, we focus on leveraging
Docker containers [5] — lightweight, secure environments that
are virtualized at the operating system level and used to execute
applications. Docker containers can effectively and securely exe-
cute and autograde student code within many different types of
runtime environments [9, 11]. We considered multiple network em-
ulation schemes before settling on this decision, including the use
of physical host PCs, virtual machines, emulation schemes involv-
ing multiprocessing, and the use of cloud services such as Amazon
EC2 instances — virtual servers provided through Amazon’s cloud
services [2]. The decision to use Docker containers was made based
on the following factors:
• CostMany Docker containers can run on a single physical
host server, making it far more cost effective than using
multiple networked physical PCs. Docker is open-source,
and free to use on your own hardware. In contrast, cloud-
based container/virtual machine services have a fee per unit
of time.
• Ease of Configuration Docker containers and networks
are simple to configure [6]. In Submitty, we allow instructors
to provide DockerFiles so they can easily specify course,
assignment, or testcase specific packages.
• Network Emulation Docker provides native support for
networks with arbitrary topology among containers. We
leverage these networks to log all messages passed by the
student application.
• Security and Isolation Docker containers isolate student
code from the host operating system. Docker networking
solutions prevent one student’s code from communicating
with that of another student’s being graded in parallel. This

represents a real advantage over multiprocessing solutions
or physical machines with known hostnames or IP addresses.
• Ease of Interface Because all Docker instances are run on a
single host server, a wrapper script may maintain handles on
all running instances. This makes it simple to attach and pipe
standard input to running Docker instances in an immediate
fashion without maintaining multiple ssh connections.
• Performant Docker containers are quick to spin up – it is
possible to create and start a new batch of containers for a
given testcase in only a few seconds. Furthermore, Docker
containers are more efficient than virtual machines and have
a small impact on their host machine’s resources. In stress-
tests with single threaded, non-networked programs with
and without Docker containers, we found that overall CPU
and memory usage increased by less than 1% each [9].
• Scalable While it falls outside of the scope of our current
work, Docker networks are scalable and may be distributed
across multiple physical host servers, making it possible to
deploy and test swarm applications [17].

4.2 Router: Intercept and Log All Messages
Our goal is to allow instructors to subject student programs to
stressful network conditions and to change these conditions over
time. Similar to the “degrader” presented in [7], we introduce an
additional, invisible node to the network that we call the router.
The router intercepts and logs all messages, applying rules regard-
ing message delay, loss, and reorder that may be unique for each
host-port pair. While the injection of such a node into the student
network is more intrusive than other solutions [1, 13], it facilitates
other desired features such as allowing students to study, learn,
and debug with access to a detailed message log; limiting network
communication to specified protocols; and evaluating student code
based on volume and patterns of communication. Furthermore,
specification of custom network rules is simple within such a model;
within our system, the router is implemented in Python and can be
customized or replaced by an instructor to delay, drop, reorder, or
otherwise directly manipulate student messages. To accommodate
assignments that require a less intrusive model, testcases can be run
in “routerless” mode, without message logging or manipulation.

Our router node is invisible to the student application — no
modifications are necessary to the student code — yet all network
communications pass through this router, allowing it to manipulate
traffic in any way necessary. If we have two nodes, A and B, and
A sends a message A→ B, the message, in actuality, follows the
path A→ router→ B. However, neither A nor B are aware that the
message passed through the router rather than directly from A to
B. To accomplish this we leverage the power of Docker network
aliasing:

• Each container in a Docker network may have a unique alias
and may be contacted by this alias by any other node in the
network.
• While Docker aliases must be unique among the aliases on
a network, they need not be unique across all networks.
• A Docker container may simultaneously be connected to
multiple networks.

B

B

C D

A

routerC

A

D

Figure 1: On the left, we illustrate a conceptual network for a
student programwith four nodes. On the right, we illustrate
the actual connectivity usingmultiple Docker networks and
our router.

Thus, we create two Docker networks (A, router), and (B, router).
However, on the network (A, router), we give the router the alias
“B” and A the alias “A_Actual” On the (B, router) network, we give
the router the alias “A” and B the alias “B_Actual.” Therefore, in
the eyes A, the router is B, and in the eyes of B, the router is A. The
router, meanwhile, can retrieve the true identities of A and B using
the “_Actual” aliases. This use of one network for each node in the
system carries with it the added benefit of making it impossible for
a student process to interface with containers other than the router.
This network architecture is illustrated in Figure 1.

The router can intercept and forward all messages as they move
through the system. To facilitate this, the necessary network in-
formation is provided to a student process via an automatically
generated knownhosts.txt file which contains the addresses of
hosts on the system and the ports on which they will be listening.
The student program must parse this file and use this information
to establish the necessary connections. Our design requires that we
add the constraint that port assignments are unique across the en-
tirety of the system. This constraint does not represent a significant
limitation on the program.

By default, the router will listen for both UDP and TCP connec-
tions, and provide students with both UDP and TCP versions of
the knownhosts.txt file. Upon initialization, our router creates a
“switchboard” dictionary, that maps a port to a sender, recipient,
and connection type (UDP or TCP). Leveraging this switchboard, it
is simple for instructors to modify the router to add rules regarding
network stress by recipient, sender, or port.

4.3 Network Configuration
Ease-of-configuration is of prime importance when developing

autograding tools for instructors. Simple test cases should lever-
age default system configurations and require only short, intuitive,
and human-readable autograding configuration files. To this end,
our system pares network specification down to five simple but
powerful parameters (Figure 2). The first of these, “use_router,”
determines whether or not the router node will be injected into
the student network. The instructor may either specify a custom
router or the default logging router will be inserted. The “con-
tainer_name” field allows the instructor to give a container an

1 {
2 "use_router" : true,
3 "containers" : [
4 {
5 "container_name" : "container0",
6 "container_image" : "python:3.6",
7 "outgoing_connections" : ["container1"],
8 "commands" : ["python3 server.py"]
9 },
10 {
11 "container_name" : "container1",
12 "container_image" : "python:3.6",
13 "outgoing_connections" : ["container0"],
14 "commands" : ["python3 client.py"]
15 }
16]
17 }

Figure 2: Specification of a Docker network for a testcase.

application-meaningful designation. If unspecified the container
names default to “container0”, “container1”, etc. The container name
is used when defining network connections and as the name of the
directory where student output is archived. The “container_image”
field specifies the Docker container image. If unspecified at the
container level within the test case, the system will check for a
“container_image” at the global level for this autograding configu-
ration. If unspecified, the system will default to a custom Ubuntu
image appropriate for typical introductory Python/C++/Java pro-
gramming assignments. The “outgoing_connections” field allows
the instructor to specify one way channels of communication be-
tween containers in the network. If unspecified, this field defaults
to all other containers created for this testcase. The combination
of the outgoing_connections across all containers for a testcase is
used to generate the knownhosts.txt file. Finally, the “commands”
array is an array of one or more of unix commands to be executed
sequentially within the container.

Network configuration JSON objects (Figure 2) are presented
to our system embedded in a JSON array. For each testcase, new
Docker containers and networks are created. As a result, each new
testcase can test different types of containers, network sizes, and
network conditions. For each testcase, the output of the run is
stored in an individual folder, which is then fed directly into our
existing Submitty autograder validation pipeline.

4.4 Methods of Evaluation and Autograding
We provide many methods for instructors to interface with stu-
dent distributed applications. In some cases, it is enough to merely
initialize a student node with some known state, either via com-
mand line arguments or through the use of an initialization file. In
such cases, the nodes of the student application must be capable
of achieving the goal of a testcase without additional instructor
intervention. For example, in the distributed calendar assignment,
an initial testcase may determine whether the nodes of the student
application can reach consensus on startup from initially inconsis-
tent or incomplete state — a task that may be performed without
additional instructor prompts or instructions.

In cases where interaction is needed, instructors may provide
and deploy their own code within an additional container on a
testcase’s network. For assignments in which students are asked

1 {
2 "dispatcher_actions" :
3 [
4 {
5 "action" : "stdin",
6 "containers" : ["container0"],
7 "string" : "This will be piped to container0\n"
8 },
9 {
10 "action" : "delay",
11 "seconds" : 2
12 },
13 {
14 "action" : "stdin",
15 "containers" : ["container1"],
16 "string" : "This is piped to container1 2 sec later\n"
17 }
18]
19 }

Figure 3: The specification of a list of dispatcher actions.

to implement only certain portions of a distributed algorithm, this
instructor node may represent one or more modules of the whole
system. For example, the instructor may write a server node while
the student writes a client node (or vice versa). The student’s code
must then interface with the instructor-written module(s), and
then (typically) the standard output of the instructor module can
be directly used for validation/autograding of the student code.
This type of “object instantiation” [16] can provide students with
invaluable experience with complicated systems without asking
them to implement every module themselves.

The student may also be asked to implement an entire distributed
system — for example a distributed calendar — while the instructor
deploys one or more “client” nodes within the network. These in-
structor written clients perform an automated batch of actions (with
appropriate time delays), connecting to different student containers
and sending them messages. In the case of the distributed calendar
assignment, the client might attempt to schedule an event while
connected to one node, then access the event while connected to
another. In a more complicated testcase, the instructor may create a
client in which two threads of execution connect to student nodes
and issue multiple sets of commands concurrently.

Some assignments lend themselves to an even more direct and
simple method of communication. To this end, we allow instructors
to “dispatch” strings to the standard input of running Docker con-
tainers. A sample of the syntax for specifying these actions is shown
in Figure 3. Dispatched actions take four forms: delay, standard
input, stop, and start actions. Actions are performed sequentially,
with no default delay between them. Standard input actions may
target one or more containers, allowing professors to quickly and
easily broadcast the same message to many student processes. Start
and stop actions may be used to connect or disconnect nodes in
the student network — a feature which is helpful for testing pro-
gram resilience to system faults. This method of delivering input
to student code is especially useful when testing peer-to-peer ap-
plications. For example, in the calendar assignment, each node in
the system may be used to represent a user. To specify a testcase
on such a network, an instructor may dispatch standard input to
multiple nodes, creating or canceling calendar events. If, at the end

Figure 4: A scatterplot correlating live demonstration scores
to automated testing of a Distributed Systems and Algo-
rithms midterm project. 5% noise has been added to all val-
ues for anonymity.

of these actions, all nodes agree on a valid calendar, the student
would receive full credit for the testcase. To test an assignment
for fault tolerance, an instructor might choose to stop a student
node mid-testcase execution. After more standard input actions
are processed, the node can be restarted into a system that has
changed since it was last active. After the system has stabilized, the
instructor may query the nodes of the network to see if they have
reached an acceptable consensus.

5 RESULTS: CASE STUDY
A core component of RPI’s Distributed Systems and Algorithms
course has been the twice yearly live demonstration of student
projects. These demonstrations consist of a one on one, 20 minute
code presentation, during which the instructor guides the student
through a suite of testcases. This term, limited automated testing
with Submitty was used as a prerequisite for participation. Students
received the benefit of multiple submissions with testing feedback,
and the demonstrations went more smoothly, as the student imple-
mentations had undergone preliminary testing.

After the live demonstrations for this term’s distributed calendar
midterm project, we adapted the set of demonstration testcases to
a more complete set of automated tests. The live testcase script
included seven tests. These ranged in difficulty from entering an
event into the calendar to testing resilience to node failure. The
tests were designed by the instructor to provide good coverage of
the problem specification.

Testcases for the live demonstration were developed to build
upon one another, with the ending state of a testcase presumed
to carry into the next. In order to capture this feature, each of
our testcases began with the state-changing actions from those
prior. This term, projects were submitted by 31 teams of students.
Our system successfully tested 27 of these projects automatically.
The four remaining submissions had automated testing failures
that will require further investigation to debug and prevent (either
by making the system more robust, or by providing appropriate

feedback to the instructor and/or student about misunderstandings
in the system or assignment specification). Had a complete test
suite been available earlier in the project period, allowing early
submission and resubmission, we are confident that the students
would have successfully adapted their implementations to meet the
requirements of automated testing.

The results of all submissions are depicted in Figure 4. All dat-
apoints have been perturbed with 5% noise on each axis to help
preserve student anonymity. The (unperturbed) results of these
testcases display a Pearson Correlation Coefficient of 0.78, and
show that our system is capable of successfully evaluating the chal-
lenging testcases from RPI’s Distributed Systems and Algorithms
course. The four assignments with auto-testing failures shown in
red were omitted from the Pearson calculation. Autotesting was
performed in parallel, and the complete test suite took fewer than
2 minutes for each student team submission. Much of this time was
used for initialization, as student nodes were given five seconds to
fully initialize per testcase. This startup time helps to ensure that
student code is not given inputs before it is fully operational.

6 DISCUSSION & LIMITATIONS
We have detailed a new framework for automatically running and
grading networked, distributed applications within Submitty, an
open-source course management and autograding platform. We
have presented a simple yet powerful means by which instructors
may specify automatically-generated networks of nodes and deploy
student code to those nodes. We have introduced the design and
implementation of a “router,” for logging and manipulating all
messages sent through a student network. We have evaluated and
implemented a number of methods for interacting with student
distributed applications including the use of “object instantiation”,
an instructor-written client, and directly via standard input. This
implementation has been successful in grading RPI’s Distributed
Systems and Algorithms course.

The open source Submitty course management and autograding
system has served CS courses of all levels at RPI since 2014. It has
become indispensable as the size of all of our courses has grown in
recent years. The success of this extension for autograding projects
in the Distributed Systems and Algorithms course has piqued in-
terest among instructors, and our solution will be deployed in our
Operating Systems and Network Programming courses in future
semesters.

7 FUTUREWORK
Our current router implementation is limited in that it expects
every network connection to use a unique port. This means that
if a node is expecting connections from two others, it must open
two sockets. Investigation is ongoing to create a new version of the
default router which will allow many to one communication.

We would like to streamline the process of developing autograd-
ing configuration files. Our current syntax is flexible, powerful, and
customizable; however, a suite of testcases for an assignment can
have duplication between tests that use similar container networks,
dispatched commands, and autograding validation. We plan to ex-
plore methods of reducing redundancy and to develop a web GUI
for autograding configuration.

REFERENCES
[1] K. Alnawasreh, P. Pelliccione, Z. Hao, M. RÃěnge, and A. Bertolino. 2017. Online

Robustness Testing of Distributed Embedded Systems: An Industrial Approach.
In 2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). 133–142. https://doi.org/10.1109/
ICSE-SEIP.2017.17

[2] Amazon. 2006-2018. Amazon EC2. https://aws.amazon.com/ec2/
[3] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D Ernst. 2016. De-

bugging Distributed Systems. Queue 14, 2, Article 50 (March 2016), 20 pages.
https://doi.org/10.1145/2927299.2940294

[4] John DeNero, Sumukh Sridhara, Manuel Pérez-Quiñones, Aatish Nayak, and Ben
Leong. 2017. Beyond Autograding: Advances in Student Feedback Platforms. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). ACM, New York, NY, USA, 651–652. https://doi.org/10.
1145/3017680.3017686

[5] Docker. 2013-2018. https://www.docker.com/
[6] Federico Kereki. 2015. Concerning Containers’ Connections: On Docker Net-

working. Linux J. 2015, 254, Article 2 (June 2015). http://dl.acm.org/citation.
cfm?id=2807678.2807680

[7] R. LÃĳbke, D. Schuster, and A. Schill. 2013. Reproducing Network Conditions for
Tests of Large-Scale Distributed Systems. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. 74–77. https://doi.org/10.
1109/CCGrid.2013.70

[8] A. Marroquin, D. Gonzalez, and S. Maag. 2015. Testing distributed systems with
test cases dependencies architecture. In 2015 7th IEEE Latin-American Conference
on Communications (LATINCOM). 1–6. https://doi.org/10.1109/LATINCOM.2015.
7430116

[9] Matthew Peveler, Evan Maicus, and Barbara Cutler. 2019. Comparing Jailed
Sandboxes vs Containers within an Autograding System. In Proceedings of the
2019 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’19). ACM, New York, NY, USA.

[10] A. Rusan and R. Vasiu. 2015. Emulation of backhaul packet loss on the LTE
S1-U interface and impact on end user throughput. In 2015 IEEE International
Conference on Intelligent Computer Communication and Processing (ICCP). 529–536.
https://doi.org/10.1109/ICCP.2015.7312715

[11] František Špaček, Radomír Sohlich, and Tomáš Dulík. 2015. Docker as Platform
for Assignments Evaluation. Procedia Engineering 100 (2015), 1665–1671.

[12] Submitty. 2014-2018. http://www.submitty.org/
[13] TERRA NULLIS. 2018. Pumba - Chaos Testing for Docker. https://alexei-led.

github.io/post/pumba_docker_chaos_testing/
[14] C. Torens and L. Ebrecht. 2010. RemoteTest: A Framework for Testing Distributed

Systems. In 2010 Fifth International Conference on Software Engineering Advances.
441–446. https://doi.org/10.1109/ICSEA.2010.75

[15] Chris Wilcox. 2015. The Role of Automation in Undergraduate Computer Science
Education. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). ACM, New York, NY, USA, 90–95. https://doi.
org/10.1145/2676723.2677226

[16] Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student
Programs. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, NY, USA, 437–442. https:
//doi.org/10.1145/2839509.2844616

[17] H. Zeng, B. Wang, W. Deng, and W. Zhang. 2017. Measurement and Evaluation
for Docker Container Networking. In 2017 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC). 105–108. https:
//doi.org/10.1109/CyberC.2017.78

https://doi.org/10.1109/ICSE-SEIP.2017.17
https://doi.org/10.1109/ICSE-SEIP.2017.17
https://aws.amazon.com/ec2/
https://doi.org/10.1145/2927299.2940294
https://doi.org/10.1145/3017680.3017686
https://doi.org/10.1145/3017680.3017686
https://www.docker.com/
http://dl.acm.org/citation.cfm?id=2807678.2807680
http://dl.acm.org/citation.cfm?id=2807678.2807680
https://doi.org/10.1109/CCGrid.2013.70
https://doi.org/10.1109/CCGrid.2013.70
https://doi.org/10.1109/LATINCOM.2015.7430116
https://doi.org/10.1109/LATINCOM.2015.7430116
https://doi.org/10.1109/ICCP.2015.7312715
http://www.submitty.org/
https://alexei-led.github.io/post/pumba_docker_chaos_testing/
https://alexei-led.github.io/post/pumba_docker_chaos_testing/
https://doi.org/10.1109/ICSEA.2010.75
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1109/CyberC.2017.78
https://doi.org/10.1109/CyberC.2017.78

	Abstract
	1 Introduction
	1.1 Manual Testing & Grading
	1.2 Grading by Live Demonstration
	1.3 Contributions

	2 Related Work
	3 System Requirements
	4 Implementation
	4.1 Isolating Docker Communications
	4.2 Router: Intercept and Log All Messages
	4.3 Network Configuration
	4.4 Methods of Evaluation and Autograding

	5 Results: Case Study
	6 Discussion & Limitations
	7 Future Work
	References

