
Analysis of Container Based vs. Jailed Sandbox
Autograding Systems

Matthew Peveler Evan Maicus Timothy Cyrus Buster Holzbauer Barbara Cutler

Abstract
Traditionally, automated testing and grading of student programming as-

signments has been done in either a jailed sandbox environment or within

a virtual machine (VM). For a VM, each submission is given its own instan-

tiation of a guest operating system (OS) running atop the host OS, with no

ability for a given submission to affect anything outside the VM. However,

using a VM is expensive in terms of system resource usages, especially

for RAM and memory, making it less than ideal for solutions without un-

limited resources. Jailed sandboxes on the other hand allow student sub-

missions to run directly on the server. Sufficient security measures must

be implemented to ensure that students cannot access each others submis-

sions or the server at large, and must prevent runaway programs, over-

utilization of system resources. Jailed sandboxes have a larger attack vector

than VMs.

Within the past several years, container systems have been gaining popu-

larity and usage within the computer science industry, primarily through

solutions such as Docker. These containers give similar security protec-

tions as a VM, but with better performance due to being able to utilize

of resources installed within the host OS and other containers. However,

containers do not have the full isolation of a VM, and thus implementing

Docker for autograding ends up facing its own set of security concerns, as

well as with the increased system resource usage. In this poster, we will

analyze how well containers work for automated testing and grading of

student homework, measuring system resources and throughput of sub-

missions of containers against the traditional jailed environment.

Jailed Sandbox Environment
• The program executes on the bare-metal server.

• In Submitty, each parallel grading process has its own “untrusted” user.

• An “untrusted” user has minimal rights, both by the programs it can ex-

ecute and the folders it is allowed to access.

• The application cannot affect or harm the server at large, nor freely access

any resource.

• Each untrusted user has read/write permissions on a tmp folder, but can-

not access the folders of any other untrusted user. (Student cannot access

the submissions of other students, nor can they manipulate the grading

process.)

• A user with elevated permissions copies student submissions into un-

trusted folders as needed during autograding and archives the results

after grading.

While potentially ’easy’ to setup, jailed sandbox environments may face

problems in dealing with differing dependencies for all of the various

courses Submitty supports at a university, as these classes may require dif-

ferent or conflicting versions of packages and software.

Containers
• Underlying technology of cgroups and namespaces since 2008.

• Popularized in 2013 by Docker.

• Virtualization at the operating-system level, avoiding overhead of a full

virtual machine.

• Share folders between the host and container via mounting ’volumes’.

• Containers can have different installed software, available programming

languages, packages, etc.

• Container configuration can be customized per course or per assignment.

• Special users and file permissions should still be carefully established

when using containers, which run everything as root by default.

• Not insignificant costs to spin up/destroy a container as well as some

additional load on CPU and RAM.

Methodology
• Identified time slices from previous semesters’ data with:

– Maximum number of submissions per hour.

– Longest average grade time (weeks with computationally intensive

homework and/or many buggy infinite loop submissions that were

terminated for time).

– Elevated wait times (the machine was running at capacity with many

concurrent jobs).

• We ’replayed’ these hours twice, once with our jailed sandbox and a sec-

ond time with containers (using Docker)

• We logged:

– How long a submission waited in the grading queue,

– How long it took to run the grading scripts over a submission,

– CPU usage percentage,

– RAM usage percentage,

– How long it took to spin up (Docker only)

– How long it dook to destroy (Docker only)

• The machine used was a Dell Poweredge R520 with an Intel Xeon ES-

2470 (8 Cores, 16 Threads) CPU and 32 GB of RAM.

Submission Data
• Submitty at RPI: ∼12-14 courses per term, ∼2000 different students per

year.

• In our CS1 course (> 700 students in Fall 2017), Submitty is used to au-

tograde both lecture exercises and longer weekly homeworks.

• Students are allowed and encouraged to resubmit their assignments to

correct errors.

• The server experiences heavy load during these lecture times and the

night of the homework deadline.

Results Discussion
• CPU was roughly the same for both, while RAM was slightly higher for

containers

• Grading time took an additional 3 - 25 seconds for docker compared to

jailed sandboxes due to spinning up and destroy containers

• On a maxed machine (all grading processes engaged), grading through-

put will be less for Docker

• Creating more containers than available virtual CPU cores causes system

instability

Future Work
• Development of automated scheduling algorithms to pre-spin up con-

tainers

• Improvement of interface for instructors to build custom Dockerfiles

• Dockerfile builder to ensure correctness of packages

• Build interface similar to Docker for grading on full VMs/external

servers

Submitty http://submitty.org

Submitty is an open source programming assignment submission system

from the Rensselaer Center for Open Source Software (RCOS), launched by

the Department of Computer Science at Rensselaer Polytechnic Institute.

Related Publications
• Correlation of a Flexible Late Day Policy with Student Stress and Pro-

gramming Assignment Plagiarism
Breese, Maicus, Peveler, and Cutler. SIGCSE 2018 Poster

• Program Analysis Tools in Automated Grading
Dinella, Breese, Maicus, Cutler, Holzbauer, and Milanova.
SIGCSE 2018 Poster

Acknowledgments
• Rensselaer Center for Open Source (RCOS)
• Red Hat Software
• Google Summer of Code 2018
•https://github.com/Submitty/


