
Program Analysis Tools in Automated Grading
Elizabeth Dinella Samuel Breese Evan Maicus

Barbara Cutler Buster Holzbauer Ana Milanova

Static Analysis
Static analysis is a critical tool to ensure software security and depend-

ability. In industry and academia, static analysis can be used to find po-

tential bugs or design problems. On Submitty, an open source homework

server created at RPI, static analysis is used to ensure structural correct-

ness of homework assignments. This functionality is used in RPI’s CSCI

1100 Computer Science 1 to automatically grade small in-lecture exercises.

For example, consider the following assignment:

(a) Assignment: rewrite the above code using a while loop

(b) Correct Student Rewrite (c) Incorrect Student Rewrite - creates a false
positive when using tools like ”grep”

In this example, all three segments of code would produce the same textual

output. Static analysis is required to accurately assess student’s progress

and avoid false positives that occur in simpler alternatives.

Lexical Analysis vs AST Analysis
Static Analysis can occur at many stages in the compilation process. In the

lexical analysis stage, we analyze a sequence of tokens. At this level of

analysis, we have no insight on the structure of the program. In the Ab-

stract Syntax Tree (AST) stage, the compiler creates a tree that represents

the structure of the program.

(d) Lexical Analysis (e) AST Analysis

By conducting analysis at a level that includes structure, we can reason

about many more interesting cases. Consider the following examples:

Lexical Analysis: 2 for loops

AST Analysis: a for loop nested in a for loop

Lexical Analysis: 2 calls to replace

AST Analysis: a call to replacewith a call to replace as an argument

Common AST Tool
This tool provides analysis at the AST level. It is unique in that it allows in-

structors to easily add new static analysis tools for different programming

languages. The tool builds a Common AST which captures the structural

similarity of the different languages. The Common AST is a subset (or in-

tersection) of the supported programming languages grammars.

The ASTs built by the Common AST Tool are shown below:

(f) (g)

(h) (i)

Union AST Tool
We also provide a second AST-level analysis tool to serve as a fallback

when common AST matching fails. This tool internally represents syn-

tax trees as generic tagged trees of nodes, which is easy to extend to new

languages but makes general structural analysis impossible.

The dark blue colored nodes shown below indicate what is covered by the

Common AST vs the light grey Union AST:

(j) (k)

(l) (m)

Use Cases for Static Analysis
Lexical Analysis use cases:

• Count print/assignment/multiplication/etc.

• Forbid use of goto/auto

• Verify use of for vs. while

• Verify use of Python dict

Use cases that can only be implemented with AST Analysis include:

• Loop depth – naive complexity analysis

• Function calls itself – naive check for recursion

• Counting calls made on a specific object

• Forbid STL vector::erase

• Checking access of class members (private, public, protected, etc.)

• Reasoning about exception handling – confirm all exceptions are caught

• Reverse engineering UML class diagrams – design pattern check

Memory Debugging
To ensure students learn and demonstrate proper explicit memory man-

agement in their C++ programs, we use a memory debugger (Dr.Memory

or Valgrind) in autograding our CSCI 1200 Data Structures course. Stu-

dents receive points for correct program output/behavior and additional

points if the memory debugger reports that their program has no memory

errors (uninitialized memory, array bounds errors, etc.) or memory leaks.

Students are encouraged to use the memory debugger on their own ma-

chine while working the homework. A survey of students found that:

Students reported that memory debugging tools were useful for:

At the end of the semester, 76% of students agreed that “The memory de-

bugger improved my understanding of pointers, memory allocation, and

memory deallocation in C++”.

Code Coverage
Code coverage measures the percentage of source code lines that are ex-

ecuted during testing. Coverage is important as it measures the quality

and completeness of the test suite as well as the conciseness of the code.

Automated grading of code coverage in Submitty motivates students to

think about and understand testing coverage and white-box testing in our

CSCI 2600 Principles of Software course. 77% of students stated that au-

tomated grading of code coverage in Submitty has helped improve their

understanding of code coverage and white-box testing. Automated grad-

ing of coverage eases the load on graders allowing them to focus on non

automated grading tasks such as quality of specifications and design.

Verification with Dafny
Dafny is a programming language from Microsoft Research that supports

formal specification and verification. In RPI’s CSCI 2600 Principles of Soft-

ware Course, we have introduced automated grading of Dafny. In previ-

ous semesters of this course, Dafny exercises were difficult to assign due to

the burden of installing Dafny on local machines, the burden on graders,

and the fact that Dafny’s web interface is highly unreliable. In the Spring

2018 semester, a total of 225 students submitted a Dafny assignment to

Submitty with a total of 645 submissions. 342 submissions of these sub-

missions received full credit on Submitty. Note: Students may resubmit before

the assignment deadline to fix errors and improve their autograding score.

JUnit
JUnit is the standard unit testing framework for Java developers. Sup-

port for JUnit is integrated into Submitty for students and instructors. In

RPI’s CSCI 2600 Principles of Software course, we use a combination of

instructor-provided unit tests, student-written unit tests, and “hidden” in-

structor unit tests. All of these tests are run and autograded on Submitty.

The immediate feedback from Submitty encourages students to think more

seriously about edge cases and other testing.

Measuring Immutability
In software engineering an object is said to be ”immutable” if once created,

it always holds the same value. In RPI’s Principles of Software Course,

students are asked to write (im)mutability specifications. In preliminary

work we have explored correlations between immutability and code cor-

rectness. In future work, we will integrate tools for inference of reference

and method immutability for automated grading with Submitty.

Submitty http://submitty.org

Submitty is an open source programming assignment submission system

from the Rensselaer Center for Open Source Software (RCOS), launched by

the Department of Computer Science at Rensselaer Polytechnic Institute.

Related Publications
• Analysis of Container Based vs. Jailed Sandbox Autograding Systems

Peveler, Maicus, Holzbauer, and Cutler, SIGCSE 2018 Poster

• Correlation of a Flexible Late Day Policy

with Student Stress and Programming Assignment Plagiarism

Breese, Maicus, Peveler, and Cutler, SIGCSE 2018 Poster

• Supporting Team Submission and Peer Grading within Submitty

Peveler, Breese, Maicus, Aikens, Cyrus, Dinella, Anderson, Barthelmess,

Lee, Montealegre, Wang, Holzbauer, Cutler, and Milanova

SIGCSE 2018 Demo

Acknowledgments
• Rensselaer Center for Open Source (RCOS)

• Red Hat Software

• Google Summer of Code

•https://github.com/Submitty/Submitty

	Static Analysis
	Lexical Analysis vs AST Analysis
	Common AST Tool
	Union AST Tool
	Use Cases for Static Analysis
	Memory Debugging
	Code Coverage
	Verification with Dafny
	JUnit
	Measuring Immutability
	Submitty http://submitty.org
	Related Publications
	Acknowledgments

